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1. Introduction

Although free higher-spin (s > 2) gauge field theories are by now fairly well understood, the

Fronsdal programme [fl] which consists in introducing (non-Abelian) consistent interactions

among these fields at the level of the action is still not achieved. Consistent nonlinear field

equations for massless totally symmetric higher-spin fields in AdS,, background have been



constructed [f], which represents a considerable achievement in higher-spin gauge field
theory. Nonetheless, a corresponding action principle is lacking.

In this paper we adopt the metric-like formulation for higher-spin gauge fields [fil, B,
consider collections of totally symmetric rank-2 and rank-3 gauge fields in flat space of
arbitrary dimension n > 3 and study the problem of introducing non-Abelian consistent
cross-interactions among spin-2 and spin-3 massless fields. By “non-Abelian”, we mean
that we focus on consistent deformations of the free theory such that the deformed gauge
algebra becomes non-Abelian.

Demanding Poincaré invariance and locality, the non-Abelian self-interacting problems
for collections of massless spin-2 and spin-3 fields, were respectively investigated in [, [{]
and [B, [ by using the exhaustive BRST-BV cohomological method developed in [§, [].
The works [[]-[i] revealed the existence of manifestly covariant cubic vertices which had
not previously been written before. We refer to these works and [[[(, [[T]] for details and
reviews on the self-interacting non-Abelian problem for spin-2 and spin-3 gauge fields in
flat n-dimensional spacetime. The search for consistent higher-spin cubic vertices is a
very important problem and other approaches exist. See e.g. [[J] for a recent light-cone
analysis in flat spacetime and more references on the problem of consistent higher-spin
vertices, including Yang-Mills and gravitational couplings. See also [E] for a recent work
concerning higher-spin vertices, including a discussion about the AdS,, background.

The Poincaré-invariant, local, non-Abelian consistent cross-interactions between spin-2
and spin-3 gauge fields in flat space remained to be analyzed in an exhaustive way and
without any prejudice on the form of the interactions. In particular, we impose no upper
limit on the number of derivatives appearing in the non-Abelian consistent vertex, apart
that it should be finite in order that locality be preserved.

The advantage of the cohomological method [, J] which we use is that it enables one to
classify and explicitly write down the consistent, nontrivial cubic vertices, without any other
assumptions than locality and perturbative nature of the deformations. This method is
also compatible with manifest Poincaré and gauge invariances, which is of great importance
in the search for a possible geometrical interpretation of the higher-spin interactions. Since
we have access to all the possible local, perturbative deformations of the gauge algebra
and gauge transformations giving rise to nontrivial consistent cubic vertices, it can be
hoped that the deformed gauge transformations provide crucial information on a possible
underlying nonlinear higher-spin geometry in flat space. Such a geometrical picture would
in turn guide us toward a full nonlinear consistent Lagrangian.

Similarly to the self-interacting totally symmetric spin-2 and spin-3 cases [{—[q, we
first classify the possible first-order deformations of the gauge algebra and then determine
which of these deformations give rise to nontrivial, consistent vertices. It turns out that
only two parity-invariant algebra-deforming candidates satisfy this strong requirement.
Interestingly enough, we find that, in order for the first candidate to induce a Poincaré-
invariant nontrivial vertex, the (colored) spin-2 massless fields must react to the spin-3 field
through a diffeomorphism-like transformation along the spin-3 gauge parameter, similarly
to the way a spin-1 field reacts to a gravitational background via its Lie derivative along
the diffeomorphism vector. Associated with the second algebra-deforming candidate is



a gauge transformation of the spin-3 field along its own gauge parameter, but involving
the linearized Riemann tensor for the spin-2 field. The first algebra-deforming candidate
corresponds to the 3 — 2 — 2 covariant vertex mentioned in [[[4, [[§], whereas the second
algebra-deforming candidate gives rise to a nontrivial consistent 2 — 3 — 3 vertex which had
previously not been written before, to our knowledge.

Our results therefore strengthen and complete those previously found in [[I6, [[4, [(5].
In particular, we recover in a simple way that both minimal and non-minimal couplings of
spin-3 gauge fields to dynamical gravity in flat space are inconsistent [L{].

In the work [[[4], consistent and covariant cubic couplings of the kind s; — s — so were
obtained, for the values of s; and sy indicated in table .

5 Of course, some of the vertices were
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Table 1: s; — sy — s covariant vertices obtained class corresponds to the “Bell-Robinson”
in [[[4]. line s; = 2s9 and below this line s; >

2s9 [1H] (see [I7] in the particular s; =
4 = 2s9 case). In the aforementioned region s; > 2s9, the gauge algebra remains Abelian
although the gauge transformations for the spin-so field are deformed at first order in a
coupling constant. The reason is that the first-order deformation of the free spin-so gauge
transformations involve the spin-s, field only through its gauge-invariant Weinberg-de Wit-
Freedman field-strength [, [[§].! Although they do not lead to non-Abelian gauge algebras,
it is interesting that the cubic interactions on and below the Bell-Robinson line (i.e. for
$1 = 2s2) have the form “spin-s; field times current J” where J is quadratic in the spin-so
field-strength [[[7, [[J] and is conserved on the spin-sg shell. Even more interestingly, these
currents can be obtained from some global invariances of the free theory by a Noether-like
procedure, provided the constant parameters associated with these rigid symmetries be
replaced by the gauge parameters of the spin-s; field (also internal indices must be treated

appropriately) [17, [[5].

In the present paper, we re-derive the non-Abelian 3 — 2 — 2 cubic vertex mentioned
in [[4], show that it is inconsistent when pushed up to second order in the deformation
parameter and obtain a consistent 2—3—3 vertex which passes the second-order consistency
test where the former Berends-Burgers-van Dam vertex fails. Moreover, at the level of the

!Note that one can write down higher-derivative Born-Infeld-like consistent cubic interactions involving
only gauge-invariant field-strength tensors [@] However, these interactions deform neither the gauge
algebra nor the gauge transformations. They are not considered in the present work but are accounted
for in the powerful light-cone approach presented in @]



Jacobi identity at second order in the coupling constant, we show that the latter 2 —3 — 3
covariant vertex is compatible with the spin-3 self-coupling written in [R0]. Also, even
though the 3 — 2 — 2 vertex stands above the Bell-Robinson line s = 2s9, we show that
it can be seen as partially resulting from the gauging of the global symmetries discussed
in [[[§]. Of course, this vertex truly deforms the gauge algebra and consequently the coupling
cannot be written in the simple form outlined before. The gauge transformations for both
spin-2 and spin-3 fields are nontrivially deformed.

The plan of the paper is as follows. In the next section we recall some basic facts on the
free spin-2 and spin-3 gauge theories and on the BRST-antifield formalism used throughout
the text. Section [ gathers together some BRST-cohomological results that are needed.
Section {| contains most of our computations and results concerning the first-order con-
sistent couplings between spin-2 and spin-3 massless fields. In section | we present the
constraints that are imposed on the first-order deformations by second-order consistency
conditions. We also discuss the links between the first-order gauge transformations pre-
sented in section [] and some results of [[[7, [§]. Finally, our conclusions and perspectives
are given in section f|. The first appendix contains a technical BRST-cohomological result.
The complete expressions for the first-order vertices are displayed in the second appendix.

2. Free theory and BRST settings

2.1 Free Theory

The action for a collection {h,,} of M non-interacting, massless spin-2 fields in spacetime
dimension n (u,v = 0,---,n — 1) is (equivalent to) the sum of M separate Pauli-Fierz
actions, namely

M
Sg[hfw] = Z/5ab |:—% (auhayp) (8“hbup) + (aﬂhaﬂy) (aphbpu>
a=1

— (@) <6phb’”’> + % (9,h,) <8“hbg>] "z, n>2. (2.1)

The lower-case Latin indices are internal indices taking M values. They are raised and low-
ered with the Kronecker delta’s §% and 8,,. The Greek indices are space-time indices taking
n values, which are lowered (resp. raised) with the “mostly plus” Minkowski metric 7,
(resp. n*). The action (R.1))is invariant under the following linear gauge transformations,

Ochiy, = Ouey, + Oyey, (2.2)

where the €2 are n x M arbitrary, independent functions. These transformations are Abelian
and irreducible. The equations of motion are

2

054

Ohg,

=—-2HI" =0
where Hjj, is the linearized Einstein tensor,

1
sz = Kﬁy — 5[(“77“”.



Here, Kgﬁ;w is the linearized Riemann tensor,

a 1 a a a a
OCBMV = —5(80{“]7/6” + 86Vha’u - 80”,]7/6“ - 8ﬁﬂhOéV) 9

K}, is the linearized Ricci tensor,

1
Kﬁy _ Kaaﬂau — _E(th"’ + .- .),

and K is the linearized scalar curvature, K = n*” K}, . The Noether identities expressing
the invariance of the free action (R.1]) under (R.2) are

8, HM =0 (2.3)

(linearized Bianchi identities). The gauge symmetry removes unwanted unphysical states.
A

pvp
spin-3 gauge fields in flat spacetime is [fl]

The local action for a collection {h of N non-interacting totally symmetric massless

N

1 3

Salhin, = / daB [ =5 Dol 07RO 4 DN, 0,1
A=1

3 A v 3 A v A v n
= OuhS 0K + 2 0, B O, KPY — 30, bl 9,hP |a"z, 24

where hf} =n” phf}l,p. The upper-case Latin indices are internal indices taking N values.
They are raised and lowered with the Kronecker delta’s 47 and d4p. The action (R.4) is
invariant under the gauge transformations

A _ A vyA
5)\h/.l,l/p = 38(ﬂ)\l/p) s 77'“ )\/J,l/ = O7 (25)

where the gauge parameters )\fp are symmetric and traceless. Curved (resp. square) brack-
ets on spacetime indices denote strength-one complete symmetrization (resp. antisym-
metrization) of the indices. The gauge transformations (P.§) are Abelian and irreducible.
The field equations read

553
=G’ =0 2.6
5hﬁup A ’ ( )
where
3
A _ A A
Glavo = Frp = 5 M by (2.7)
is the “Einstein” tensor and F !f}/p the Fronsdal (or “Ricci”) tensor
A _pA A A
Fop =0hl,, =30°9,h;,, +30,0,hy) - (2.8)

The Fronsdal tensor is gauge invariant thanks to the tracelessness of the gauge parameters.

Because we have 5)\So[h;:‘yp] = 0 for the gauge transformations (2.), the Einstein tensor
Gﬁyp satisfies the Noether identities
1
A A A A
0°Gp — - Nuwd’G, =0 (G, =n"G,) (2.9)



related to the symmetries of the gauge parameters )\ﬁy; in other words, the Lh.s. of (R.9)
is symmetric and traceless.

An important object is the Weinberg-de Wit-Freedman (or “Riemann”) spin-3 ten-

sor (18, B, B

A _ A
Kouisvive = 80 0180a i)
which is antisymmetric in au, Sv, vyp and invariant under gauge transformations (P.§),
where the gauge parameters )\f}l, are however not necessarily traceless. Its importance,
apart from gauge invariance with unconstrained gauge parameters, stems from the fact
that the field equations (R.4) are equivalent to the following equations
A
naﬁKau\ﬁV\'yp =0,
after a partial gauge fixing. This was proved in the work [B3] by combining various former
results [24-PR6]. See [27] for more details and for the arbitrary mixed-symmetry case.

2.2 BRST spectrum and differential

According to the general rules of the BRST-antifield formalism, the field spectrum consists
of the fields {Ay,, hﬁyp}, the ghosts {C}], C’;‘V}, the antifields {hg"", h’{"””} and the ghost
antifields {Cy", CZ“ “}. The set of fields and ghosts will sometimes be collectively denoted
by ®!, whereas the associated set of antifields will be denoted by ®%.

The BRST differential s of the free theory Sp[h®, h4] = S2 [he,]+ S5 [hf}u o] 1s generated
by the functional

Wo = Solh®, h1] + / (2h;00,C5 + 3R 0,C5L) d'.
More precisely, Wy is the generator of the BRST differential s of the free theory through
sA = (W(], A) 5

where the antibracket (, ) is defined by

RASLB  6RASLB

A B) = -
(4.B) = 51 507 00 501

using the condensed de Witt notation in which a summation over a repeated index also
implies an integration over spacetime variables.
The functional W is a solution of the master equation

(Wo, Wy) =0.

In the theory at hand, the BRST-differential s decomposes into s = v + §. The first
piece v, the differential along the gauge orbits, is associated with the N-grading called
pureghost number (puregh) and increases it by one unit, whereas the Koszul-Tate differen-
tial 0 decreases the grading called antighost number (antigh) by one unit. The differential



y/ puregh(Z) | antigh(Z) | gh(Z) | parity (mod 2)
a A
{huy, P 0 0 0 0
a (YA
{Cﬂ, CMV} 1 0 1 1
{ha!™ WP 0 1 -1 1
{cat, ety 0 2 -2 0

Table 2: Pureghost number, antighost number, ghost number and parity of the (anti)fields.

s increases the Z-grading called ghost number (gh) by one unit. Furthermore, the ghost,
antighost and pureghost gradings are not independent. We have the relation

gh = puregh — antigh .

The pureghost number, antighost number, ghost number and grassmannian parity of the
various fields are displayed in table fl. The action of the differentials § and v gives zero on
all the fields of the formalism except in the few following cases:

SR =GP, sha! = —2H"
OO = =3(0,h 4™ — S OphY) . 8Ce! = —20,hi™,
A _ A a = o
r)/huup - 38(,ucup) ’ r}/hl“/ =2 a(l’«c”) )

More details about the antifield formalism for spin-2 and spin-3 can be found in [, f].

2.3 BRST deformations

As shown in [J], the Noether procedure can be reformulated within a BRST-cohomological
framework. Any consistent deformation of the gauge theory corresponds to a solution

W =Wy + gW1 + ¢*Wo + O(g%)

of the deformed master equation (W, W) = 0. Consequently, the first-order nontrivial
consistent local deformations Wy = [ a™Y are in one-to-one correspondence with elements
of the cohomology H™%(s|d) of the zeroth order BRST differential s = (Wp,-) modulo the
total derivative d, in maximum form-degree n and in ghost number 0. That is, one must

compute the general solution of the cocycle condition

sa™% 4 dp" " =0, (2.10)

where a™? is a top-form of ghost number zero and b" 5! a (n — 1)-form of ghost number

one, with the understanding that two solutions of (R.1() that differ by a trivial solution
should be identified

-1 -1
an,ONan,O+Spn, +dqn ,07

as they define the same interactions up to field redefinitions. The cocycles and coboundaries
a,b,p,q,... are local forms of the field variables, including ghosts and antifields (those are



forms acting on the jet space J, the vectorial space generated by the fields and a finite
number k of their derivatives).

The corresponding second-order interactions Ws must satisfy the consistency condition
1
SW2 = —§(W1,W1). (2.11)

This condition is controlled by the local BRST cohomology group H™!(s|d).

3. Cohomological results

3.1 Cohomology of v

In the context of local free theories in Minkowski space for massless spin-s gauge fields
represented by totally symmetric (and double traceless when s > 3) rank s tensors, the
groups H*(7) have been calculated in [B§]. When a sum of several such theories for different
spins is considered, the cohomology is the direct product of the cohomologies of the different
theories. We will prove it only in the case of a sum of spin-2 and spin-3 Fronsdal theories,

but the proof can straightforwardly be extended.

Proposition 1. The cohomology of v is isomorphic to the space of functions depending

on
e the antifields {ha""', W}"P, Co*', C'"'} and their derivatives, denoted by [®%],
e the curvatures and their derivatives [K{, 5], [K&L‘ulﬁva] ,
o the symmetrized derivatives (9( ao,kF:L of the Fronsdal tensor,
e the ghosts C}; and their antisymmetrized first-order derivatives 8[u03]7 the ghosts C’fy

and the traceless parts of 9. CA and?* 8, C4 .
[w="vlp [k~"v]lp,0]
Thus, identifying with zero any ~y-exact term in H(vy), we have
vf=0
if and only if

* A a a A
f=r ([‘bl]? [Ka,u|6u|ﬂ/p]7 [Ka,uﬁu]?{ up} Cw 8[;10 1 C,uwT i Uau\ﬁu)

where {F;}/p} stands for the completely symmetrized derivatives (9( angWp of the
the

Fronsdal tensor, while T\A‘ denotes the traceless part of T[;‘L‘V = a[pcu] and U4
traceless part of U4 = 3[ cA B

pulov

Jlvo] -

pplov

2A coma denotes a partial derivative, e.g. CI{ZL = 0,9,



Let {w'} be a basis of the space of polynomials in the Ciis (9[#C‘Vl}, CA . TA  and

MYy T aply
U fu\ v (since these variables anticommute, this space is finite-dimensional). If a local form
a is ~y-closed, we have

va=0 = a = as([@f], K7, [KY,{FA}) o’ (C8,0,,C. Ol T U 15,) +7b.(3.1)

If a has a fixed, finite ghost number, then a can only contain a finite number of antifields.
Moreover, since the local form a possesses a finite number of derivatives, we find that the oy
are polynomials. Such a polynomial a;([®%], [K?], [K“], {FA}) will be called an invariant
polynomial. The proof of Proposition [l] is given in appendix [A].

Remark: Because of the Damour-Deser identity [j]

af 1A _ A

n KauIBVIw =2 8[“/thw )
the derivatives of the Fronsdal tensor F4 are not all independent of the curvature tensor
K4 . This is why, in Proposition fl, the completely symmetrized derivatives of F A appear,
together with all the derivatives of the curvature K4 . However, from now on, we will
assume that every time the trace 7 Kam Bulyp APPeArs, we substitute Qath}uu for it.
With this convention, we can write a([®F], [K%], [K4],[F4]) instead of the inconvenient

notation ay([®"], [K9], [K4],{F}).

3.2 Invariant Poincaré lemma

We shall need several standard results on the cohomology of d in the space of invariant

polynomials.

Proposition 2. In form degree less than n and in antifield number strictly greater than 0,
the cohomology of d is trivial in the space of invariant polynomials. That is to say, if a is
an invariant polynomial, the equation do = 0 with antigh(a) > 0 implies o = df where (3
s also an invariant polynomial.

The latter property is rather generic for gauge theories (see e.g. ref. [H] for a proof), as well
as the following:

Proposition 3. If a has strictly positive antifield number, then the equation vya + db =0
is equivalent, up to trivial redefinitions, to va = 0. More precisely, one can always add
d-ezact terms to a and get a cocycle a’ = a + dc of 7y, such that vya' = 0.

Proof. See e.g. [{.

3.3 Cohomology of § modulo d: H}(d|d)

In this section, we review the local Koszul-Tate cohomology groups in top form-degree and
antighost numbers k& > 2. The group H{(d|d) describes the infinitely many conserved
currents and will not be studied here.

Let us first recall a general result (Theorem 9.1 in [R])).



Proposition 4. For a linear gauge theory of reducibility order r,
Hy(0ld) =0 forp>r+2.

Since the theory at hand has no reducibility, we are left with the computation of H (5] d) .
The cohomology H%(d|d) is given by the following theorem.

Proposition 5. A complete set of representatives of H3(d|d) is given by the antifields
{Ca", T}, up to explicitly x-dependent terms. In detail,

6ag * db?_l =0 A *UV -1
— n — )\a C*H L C 2 ar So Ab"
{ agwag—kécg-kdcg*l a2 [ (@) + L, (2)CY ] T + 0bs + dby

where Xj,(r) = aj, + ... is a degree-1 polynomial in x¥ and Lfy(x) = )\ﬁy + ... is a degree-2
polynomial.

The coeflicients of these polynomials have definite symmetry properties that we will not
recall here. The complete analysis can be found in [, fi]. See also [B0, BI]. From the
requirement of Poincaré invariance, explicit dependence in the coordinates is forbidden
and we will only consider the constant terms aﬁ and )\f}l, in the expansions of )\ﬁ(x) and
L;‘V (z).

The most general n-form in antigh 2 is a = (fiCa" + J%,Czuy)d"x + ® + 6b + dc, where
® is quadratic in the antigh-1 antifields. If one applies d, the d-exact term vanishes and
6@ ~ 0. So, if a € Hy(d|d), the weak equality (—2f50,h*" — 3]/”\:‘l,8ph2“”p)d"m ~ dv is
obtained. Finally, by applying variational derivatives with respect to hs'"" and hZ“ “P the
two weak equalities 9, fl‘f) ~ 0 and 8(“ﬁ) ~ (0 are obtained. These are both on-shell
Killing equations for the individual spin-2 and spin-3 cases. Each equation of the type
Ay ﬁz--us) ~ 0 provides H%(d|d) for the pure spin-s case, the solutions of which have been
given in ref. [P§] (see also [BJ]). This is because those solutions are d-closed modulo d and
because ® obeying d® +dc ~ 0 is a trivial cocycle [BJ]. The spin-2 case under consideration
was already written in ref. [l and the spin-3 case was written in [, BIJ. In any mixed case,
the different equations for the different spins will have to be satisfied and H3(d|d) is then
the direct sum of the individual cases.

We have studied above the cohomology of § modulo d in the space of arbitary local
functions of the fields, the antifields, and their derivatives. One can also study Hj'(|d)
in the space of invariant polynomials in these variables. The above theorems remain un-
changed in this space, i.e. we have the

Proposition 6. The invariant cohomology H}}(S|d, Ho(7y)) is trivial in antighost number
k > 2. In antighost number k = 2, we have the isomorphism H%(6|d, Ho(y)) = HY(d|d) .

This very nontrivial property is crucial for the computation of H™?(s|d). It has been proved
for the spin-2 case in [ and for the spin-3 case in [f] for n > 3, and [ for n = 3. In the
mixed spin-2-spin-3 case, the proof goes along the same lines. It has to be checked that,
in a coboundary in form degree n: ay = dby41 + @J;j (in dual notation), if ay is invariant,

,10,



then by and j,‘: can be chosen as being invariant. This is done by reconstructing ay from
its variational derivatives with respect to the different fields and antifields (see [ff], Lemma
A.2 and [f], section 4.6.2). The considerations made for the spin-2 and spin-3 derivatives
hold independently here, and ap can be reconstructed in an invariant way with no further
problems.

3.4 Definition of the D-degree

Definition (differential D): The action of the differential D on the fields, the antifields
and all their derivatives is the same as the action of the total derivative d, but its action
on the ghosts is given by:

DCe, = g7

pr = 34 Lauy)

walp = 427 Upo)ps 5
D(0p,..pCih)) =0 if t>2,
Dcy = dacl’@[yCz} )

D(0p,..p,Cp) =0 if v>1.

The above definitions follow from

1 4
A A A
aac;u/ - g(’yhauu) + gTa(MV),
1
A _ A A
T s = ) W(a[ahu}ﬁp) t Upialos >
1
A _ A
apUMOé\Vﬁ - gW(a[ﬂhC‘é}P[ﬁvV})'

The operator D thus coincides with d up to y-exact terms.
It follows from the definitions that Dw” = A7 ;w! for some constant matrix A7 that

involves dz* only. It is also convenient to introduce a new grading.

Definition (D-degree): The number of T\f#‘y’s and O[MC’LI]’S plus twice the number of

U oflu\ By’s is called the D-degree. It is bounded because there is a finite number of 8[“03]’87

T\ﬁmy’s and ﬁfm ﬁy’s, which are anticommuting. The operator D splits as the sum of
an operator D that raises the D-degree by one unit, and an operator Dy that leaves it
unchanged. Dy has the same action as d on the fields, the antifields and all their derivatives,
and gives 0 when acting on the ghosts. D; gives 0 when acting on all the variables but the
ghosts on which it reproduces the action of D.

4. First-order consistent deformations

As recalled in section .3, nontrivial consistent interactions are in one-to-one correspon-
dance with elements of H™%(s|d), i.e. solutions a of the equation

sa+db=0, (4.1)

— 11 —



with form-degree n and ghost number zero, modulo the equivalence relation
a~a+sp+dgq.
Quite generally, one can expand a according to the antighost number, as
a=ap+al+as+...a;, (4.2)

where a; has antighost number i. The expansion stops at some finite value of the antighost
number by locality, as was proved in [BJ).

Let us recall [f] the meaning of the various components of a in this expansion. The
antifield-independent piece ag is the deformation of the Lagrangian; a1, which is linear in
the antifields h*, contains the information about the deformation of the gauge symmetries,
given by the coefficients of h*; ay contains the information about the deformation of the
gauge algebra (the term C*CC gives the deformation of the structure functions appearing
in the commutator of two gauge transformations, while the term h*h*CC gives the on-
shell closure terms); and the ay (k > 2) give the informations about the deformation of the
higher order structure functions and the reducibility conditions.

4.1 Equations

In fact, using the previous cohomological theorems and standard reasonings (see e.g. [H]),
one can remove all components of a with antifield number greater than 2. The key point
is that the invariant characteristic cohomology H,?’mv(é |d) controls the obstructions to the
removal of the term aj from a and that all H,?’im@ |d) vanish for k£ > 2 by Proposition
and Proposition [f.

Let us now decompose the cocycle condition ([.1) according to the antighost number.
If a = ap + a1 + ag, then b can be assumed to stop at antigh 1 thanks to Proposition B
Using the fact that s = § 4+ =, we obtain:

yag =0, (4.3)
das +~yay +db; =0,
5&1 + yago —|—db0 =0.

The first equation clearly means that [a2] € H2(v) & a2 = ayw’ +7cy as in Equation (B.1).
Applying v to Equation (f£4), dyb; = 0 is obtained. Thanks to the Poincaré lemma and
Proposition ], we see that by can be taken in H?(v) too: by = Byw”’. The second equation
becomes

(bay)w” 4+ ~vay + dBjw’ + Brdw’ = 0.

Let us now introduce the differential D defined in section B.4, we obtain
by +dBy + BrAL W) =~(...) =0.

This is because the left-hand side is strictly non ~y-exact. Let us label the ghosts more
precisely w’i where i is the D-degree. Then, as D raises by 1 the D-degree, the only non
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zero components of the matrix A are Aﬁﬂ and the last equation decomposes into:

day, +dBy, =0,
Vi >0 :5aji+dﬁji+ﬂji_lA§z—1 =0.

The first equation means that
g, € HY(8]d, Ho(7)) = gy = MsoanC ™ + Aja O d"

thanks to Proposition 5 and Proposition 6. The A’s are constants, because of the Poincaré
invariance. We obtain
-1

(n—1)! 22 Joanh ™ 43X g 4 O e gy dt . datn 1

By =

Thus, G JOAig depends only on the underivated antifields, which cannot be d-exact

modulo d unless they vanish, because a d-exact term depends on the derivatives of the

antifields or on the equations of motion, and because of the Poincaré invariance. Thus,

day, +dfBy, = 0and JOAﬁ = 0 independently. By applying the same reasoning recursively,
the same decomposition appears to occur at every D-degree, so we finally obtain:

Vi 504Ji + dﬁji_l =0=aqay € Hzﬂ‘m)((ﬂd),

, : 4.6
Vi :ﬁJiAjZ+l =0. (4.6)

4.2 Classification of the gauge algebras

The first set of equations (l.q) provides a very limited number of candidates az. The
different possible Lorentz-invariant terms have the form « Jini = A JZ....C'*"'in. The
indices J; are spacetime indices and internal indices.®> The Poincaré and parity invariance
requirements impose that the constant tensors Ay, depend only on 7, or 5%. Thus, the
only possible terms are given by the Lorentz-invariant contractions of an undifferentiated
antifield C* with w’i’s quadratic in the ghosts, contracted with arbitrary internal constant
“tensors”. The pure spin-2 and spin-3 terms have already been studied in [d] and [f]. Let
us give the exhaustive list of cross-interacting terms:

1 (1)

(a)2 _ f Alb] C*A;w CZ Cﬁ dn.%',
2) @ xap ~B ~ev ogn
ag = fqap C""C,, C"d"x,
3 3)
(a)2 _ f ABe C*AH,V 8[ycf];“ cee dn.%',
(4) (4) " B
ay = fap. CMC "0, Chd" s
5 (5)
(a)2 _ faBC Crraa CB,ul/ a[UCC dnx,

olu
©
@y = e CWCP9,CC aa,

3For example: {w’0} = {C**CY CoeCtrv cABCBIVY,
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(7) (7) * 14 a (0% mn
@y = flac C*M 004 0,ChHn™ de,

(®)
@y = f.pc C*ICPIO9,0,C5, d"x,

(@)
where { f }5_; are eight arbitrary constant tensors.
Note that ags) is trivial when n = 3, because of a Schouten identity (or equivalently

because there is no non-vanishing tensor U, in dimension 3).

Bluv

4.3 Computation of the gauge transformations

The second set of equations ([.6) has to be satisfied in order for Equation (f.4) to have

a solution, and thus in order for a; to exist. This is not true for every ((Zl)g. In fact, it is
faster to directly compute das and check whether it is v-exact modulo d, possibly given a
symmetry rule on the internal indices. The latter condition das + ya; + dc; = 0 implies

(1) (2) (®)
that the constant tensors f 4p., f .. and f,pc must vanish. The following relations
(®) ) (4) ®3)
between constant tensors are also obtained: [ ,pc=f 4Bc) and [ ap.= —% f aBe- We
thus get all of the possible a;’s, which we classify according to the number of derivatives

they involve:

®3)

3 * Apv, B co B ico A« c Ba c
a11 = f ape [§h e (3[Vho]upc _8[V00]u p ~ Mup 8[Vca] +3C,79, a]ﬂ)

3
*p B rco mn
__nh 0p(hy C )} d"z, (4.7)

(6)

*aQUo v1b C v b, C m
ars = f g B [20 W, S, — ' c%o,ng | de

(7) 1
6 Faper WO =~ h 0| Oy by O, Clp d e+ (4.8)
® *q, « ~BPv C C n —
ars = — f aBC h*HPO*C [2au[ahmyp — al,[ahmup]d T+ a3, (49)

where the a1 ; terms are solutions of the homogeneous equations
vai; +de; =0, (4.10)
which is equivalent to solving the equation
vay; =0 = [a1;) € H'(v), (4.11)
as proved by Proposition f.
As a matter of fact, the solutions a@;; linear in the fields play a crucial role in the

present analysis, as we show in the next subsection. There is no such solution with one
derivative, because the y-closed functions of the fields involve at least 2 derivatives.
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4.4 Computation of cubic vertices

We now have to solve equation ([.§) for each a1,; . In order to achieve this heavy calculation,
we have been using FORM, a powerful software for symbolic computation (see [Bd]). We
have simply considered the most general candidates for ag ;, implemented the a; ; (including
the most general expression for a;;) then solved the systems. It turns out that daj;
cannot be ~y-exact modulo d, but we obtain consistent vertices for the two other cases,
corresponding to aj 2 and a3 .

Incidentally, note that the last term on the first line of Equation ([.7) gives the first-

order correction needed in order to transform the ordinary derivative 9, A, into the co-

vp

variant one V( u)‘ for the torsionless metric connection V associated with g, = 1, +hu.

v

(where we omit top)write the internal indices). In other words, we recover the result of [[If]
that both minimal and non-minimal couplings of massless spin-3 field to dynamical gravity
in flat space are inconsistent. In fact our result is more general. It says that, what-
ever the complete gauge transformation of the spin-3 field is, if it contains the first-order
correction needed to transform doh,., = 39, into the covariantized transformation
hywp = 3V (uA,p), then there is no consistent couplings between the spin-3 and spin-2
fields in flat background. Apart from Lorentz invariance, we made no assumptions on the
form of the possible interaction and imposed no constraints on the number of derivatives

(except that it should be finite for locality). The result follows from consistency.

4.4.1 Solution with three derivatives
(7) (6)

First, some new relations on the structure constants are obtained: [ [40= —% f ave-
From now on, we will call the structure constant gap. = gap. The solution of Equa-

tions ({.3), (4) and ([£]) is as follows:

1
2,2 = gAbe [C*bﬂ 0"C oy, Cyp, — 3 C A 91, Ch 0,,C nﬂ d"z (4.12)

aip = Gapch™H [23”h§"3[1,0;}‘ﬂ — 3”CCp0[Vh;%M} d"x

_3gAbch*baﬁKguﬁycAuudnx
* v 1 V1 *x C (a9 mn
—29Abe [h Apvp _ —n"h AP} by, 0 Com ™ d" x, (4.13)

The expression for ag is given in appendix B.
4.4.2 Solution with four derivatives

(®)
Let us rename f,pc the structure constant f ,pc. The solution of the equations ([£3), (E4)

and ([£5) is
az3 = fapo C** 0°CP 0,0,CF, d", (4.14)

3 wapw 3 . L 2., ,
ai3z = faBC |:§h ap 8prCE’V + §h Baﬁ’yaaKg‘mWCC“ + Eh BO‘KgMVpa CC’PM A"z

*a, o ~Bpv C C n
_ fupe hrme 9o CBo [23M[ahmyp—6y[ahﬁ]up] dz (4.15)
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The expression for ag 3 is given in appendix B.

5. Further results

5.1 Conditions at second order in the coupling constants

After this exhaustive determination of the consistent first-order deformations Wy, it is
natural to study the second order equation (R.11]). This equation can be decomposed into
equations of definite antighost numbers. Let us consider Wy = f (bo+b1+bay+...). The
top equation is then

(az, az) = —20b3 — 2vby + d( . ) R

but (az,as) does not depend on the fields and on the antigh-1 antifields so no d-exact term
can appear. This means that Vi > 2 : sb; = d(...). This follows the same pattern as for
W7. It has been shown in [ that the homology of s modulo d is trivial in that sector and
thus the expansion of Ws stops at antigh = 2.

Let us now compute the antibracket (az,a). We have to consider for ay the sum of the
different terms related to cubic vertices involving spin-2 and/or spin-3 fields. This includes
as2 and as 3, the pure spin-2 Einstein-Hilbert term H

a5 = gy C*HC 0y, Cod"x
and the two pure spin-3 terms [f]
ayPP = ke O (T TSV — 212 ;TP + cBaﬁU o) A

and
BBC _ l Bo C* VU aw}\UCa‘ﬁ)\ d"x

Let us give the list of the different antibrackets involving a2 and ag 3 in which we have
already isolated y-exact and d-exact parts:

(a5, a2) = —a® 19ab5C*" 0, CHOCHTEOP I + alyguy s Cre OO, CHUFTHIP
+0°, 00 0 C 90, C”° (C*baahcg]a n gc;”“nﬂlvahcg})
+7(...) + div.
(aJQEH a2,3) _ _aaeffchc*eua[ Cf}TBI UC’pa\uT + aaeffchc*echUpB;ITVUC’pamu
+7(...) + div.
e *q, T *CUT a Ca
(a2727a2,2) = 29aeC9yp [C #8[5021 ralu yPrelBy — 20 # 0[ C }BmC*’}U 18y

+7(...) + div.

((12,2, a2,3) = gabCfaDE [C* VTTC;”V

2 +Cuv so b DBr|parrE .
(a2, a5P"P) = guck, gCTO); C’b]

3rrDTv|aBE D v ET(a|f8) 3r7Dv Eap|T

UPTIOT = BU D o T 4 §U PR TP

+59a0k D pCaf U 9, CA81, Chnp” +9(....) + div.
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(a23,a23) =0

v *a TV E'a o
(a2,8:057°F) = — fupck®y pCrovConm [SUD,  TF0 130l T ‘ﬁ)]
B sapCoulv |9 E ap E(a|B)
+fanok D pC TN (UL U™ + 3U a0 Un ”]
+7(...) + div.

BC

The antibrackets involving a2 are both y-exact modulo d, which is mostly because of

its high number of derivatives. We can see that a3 seems to be behaving well. First,
its antibracket with itself is vanishing. Then, looking at its antibracket with a2 it
appears that the two expressions between square brackets of non vy-exact terms are very
similar. The only difference is the ordering of the internal indices and thus, by imposing the
relation f, B(Ck:g) g = 0, this antibracket is consistent. Then, we can see that as 2 seems to
be obstructed. The antibrackets (az2,a22) and (as 2, aBBP) have some non y-exact terms
in common but there is no combination allowing to remove them all. The only remaining
ways to remove such terms would be to consider as terms involving combinations of spins
1-2—-2,1-3-3,1—2—30r 2—3—4. As we stated in the introduction, it is already
known that there is no deformation of the algebra for combinations s; — sy — s where
$1 = 289 so there is no ay for a 4 — 2 — 2 combination. It is very easy to see that there is
no Lorentz-invariant way to write an as for a 1 — 2 — 3 combination. The remaining cases
are more promising and we intend to study them in a near future. But it already appears
to us that they do not remove the obstruction in (az2,a22). It is not very surprising
that the antibrackets (al’? ,az2) and (ag2,a23) do not behave well either. The last term,
(az"

brings could be eliminated, resorting to 2 — 3 — 4 interactions. However, as a preliminary

,az3), brings in another interesting feature. Once again, the obstructions that it

computation shows, no terms quadratic in U appear for 2 — 3 — 4 deformations. So this
indicates that the 2 — 3 — 3 deformation that we have found is not compatible with the
Einstein-Hilbert deformation.

5.2 Gauging of rigid symmetries

In the previous section, we obtained two classes of first-order deformations associated with
non-Abelian algebras. Corresponding to the gauge-algebra deformation ag 2 displayed in
equation ({.19) we have the following first-order gauge transformations

a _ a Buv vy B b v\ B v b
5 = 95 (3 ap AP + Q{0 NG + 01y g0 NG = R0 ), (5.1)
1
A _ A b c . oT b a fle
My = =29, <8mh0}p6[yeﬂn — Tl a[ahﬁ]p(?[ el ) ’ (5.2)

where the right-hand-side of (5.3) must be totally symmetrized on the free indices. The
first term on the right-hand-side of (B.I]) comes from @ o, solution of the equation ({.11)).
The term gAhgﬁ = 3945 K b QVBABW is therefore absolutely necessary for the existence
of the cubic vertex associated with az2. Up to some trivial gauge transformation, it is
possible to express & zhas differently: 5)h? af =3 § has — 33(04‘/5), where

S hes = g% [NBH 0,0,h0 5 + NP 910 5+ g1 9,0, + DaDp AP hfw] (5.3)
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and V2 = g% [2\Br a[“hg ,+1 aa()\BWth,)] . The transformations 2 § hg,5 and gAhgﬁ
are identified since they differ by a trivial zeroth-order gauge transformation —3 (9(04‘/5)
which can be eliminated by a redefinition of the gauge parameters €% in Formula (R.9).
Because the transformation &hgﬁ involves the spin-2 fields hg 4 only via the linearized
Riemann tensors Kzauﬁ,
relations hold [d¢, 0] = 0, where 5ehgﬁ = 28(ae%). The latter vanishing of commutator

it is clear that &hgﬁ is y-closed and the following commutation

simply re-expresses the fact that a; is not derived from any algebra-deformation as, since
it satisfies the equation (f.10) va; 4+ dap = de; with ag d-trivial modulo d.

When the parameters A" are all constant, the transformations (5.1) reduce, modulo

trivial gauge transformations, to dhy,, = %g“bB \Bas aa(?ghfw. Therefore, we recover the

— hi s T8 Oy - Oay B, exhibited in [[[§], where

rigid symmetries dhj,

AP b RS 1
— — ac — Ci a 3] ac — n— ca
s=2n=2and % ., =38 6%gs%. Asin [[5, we have £%, ,, = ()", .,

due to the symmetry properties of g4p. that we derived in our cohomological analysis
in section W.4.1]. Retrospectively, we can therefore consider the consistent first-order de-
formation obtained in section as resulting from the gauging of the rigid symmetry
B s = P + 8% 1% 0oy Oan by, Presented in [[5]. However, we have shown that this
gauging is inconsistent when pushed up to the second order in the coupling constants.

3

Remark: In the framework of differential multicomplexes (see [2f] and the appendix A
of [R7] for precise definitions and related concepts) we are given s differential forms d;z* (i =
1,2,...,s) obeying d;z"d;jz" = (—)5”’ d;z¥d;x# where the wedge product is not explicitly
written. Their adjoints (d;z*) obey the same (anti)commutation relations and we have the
crossed (anti)commutation relations [d;z*, (d;jz¥)1]L = &§;;n*" where [, |1 stands for the Zo-
graded commutator. The s nilpotent differential operators d; = dix“% (i=1,2,...,9)
are defined which generalize the exterior differential of the de Rham complex. Setting
s = 2 and forgetting about the internal indices for a while since they play no role in the

following discussion, we may view h,g as the components of the differential multiform
h = hop dix%daz? and re-write Formula (B.3) as

§ h = (izdidy + dyizda + doindy + didoiy) h
= (di +da +))°h (5.4)

where iy = Ay (diz#)T(dez?)T. The expression (F4) § = (di + d2 + ix)? generalizes
Cartan’s formula L¢ = (i¢ + d)(i¢ + d) = i¢cd + di¢ for the usual Lie derivative along the
vector ¢ in the framework of the de Rham differential complex. There, i¢ is the interior
product associated with the vector ¢ and d the usual exterior differential.
When a spin-1 field A, is coupled to gravity, it transforms under diffeomorphisms via the
Lie derivative along the diffeomorphism vector (, 52“514 = LA where A = dz" A,. By
analogy, it is tempting to view § h as the “spin-3 diffeomorphism” of the spin-2 field h =
haog di1z%dyx® along the gauge parameter \ = A 0,0, of the spin-3 field. However, as we
said before, this transformation appears in the deformation Wy = f(a2,2—|—a172—|—a072) which,
we have shown, is inconsistent when pushed at second order in the coupling constants.
Let us now consider the gauge transformations corresponding to the four-derivative
deformation Wy = f(a2,3 + a1 3 + ap3) obtained in section [.4.9. See in particular Equa-
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tion ([E15). It turns out to be convenient to add trivial gauge transformations to them, by
noting that

3 *auy *auyv * 3 *auv *
SO EFCL, = = (0P P )C, = 0 <Rh a aphqu?y> +..

* a 17 4 apuv
hBP<aK ol + 5 K0, Cﬁ>+5(...)+7(...)+d(...).

3
n
3
n
Accordingly, we have the following first-order gauge transformations of the spin-2 and
spin-3 fields:

a a «a\ BBo C
o = ~ L5 [N (el G + OutahGors = Doteh G )| (5.5)
B 3 a 1 a Cuv
5ha6fy = fa C |:§ aaKB;ryy - E naﬁa'yKuy AZH
2
+ 7 e <wap + Ka[u”ﬂ]v) ay)‘cw} (5.6)

where the right-hand-side of the second equation must be totally symmetrized over the
free indices. By setting the gauge parameters to constants, one could wonder whether
some rigid symmetry appears, that could retrospectively be seen as being gauged. Clearly,
nothing comes from the gauge transformations of hgs. As far as the spin-3 fields are

concerned, only the term f, C { ((9 KG o — naﬁa >)\CW] (which must be sym-

metrized over af7y) survives when the gauge parameters are set to constants. However,
with AC# all constants, it is readily seen that it can be written as 3(9(0{/&]637) where

Agﬂf = — faBC [% (Kz(ﬁv)v + %7757[(3» \CHv ] and hence can be eliminated by a redefi-
nition of the gauge parameters of the free gauge transformations (B.5§). Indeed, nﬁ'yAgy
is vanishing. As a result, no rigid gauge transformations can be obtained upon setting to
constants the gauge parameters in the first-order gauge transformations (f.§) and (f.4).

[Note, however, that the constants are not the only solutions of the higher-spin Killing
equations. |

6. Conclusions and perspectives

In this paper we carefully analyzed the problem of introducing consistent cross-interactions
among a countable collection of spin-3 and spin-2 gauge fields in flat spacetime of arbitrary
dimension n > 3. For this purpose we used the powerful BRST cohomological deformation
techniques in order to be exhaustive. Under the sole assumptions of locality, parity invari-
ance, Poincaré invariance and perturbative deformation of the free theory, we proved that
only two classes of non-Abelian deformations are consistent at first order. The first defor-
mation, which involves three derivatives in the Lagrangian, was already mentioned in the
work [[4]. We showed that it is obstructed at second order in the deformation parameters
if no other fields are present in the analysis. The second deformation involves four deriva-
tives in the Lagrangian and passes the second-order constraint — equivalent to the Jacobi
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identities of the gauge algebra at the corresponding order — where the previous defor-
mation failed. Moreover, combining this algebra-deformation with the one corresponding
to the Berends-Burgers-van Dam deformation, the crossed second-order constraint is also
satisfied given a symmetry condition on the product of the internal coefficients, while a
combination with the Einstein-Hilbert deformation is obstructed.

We also discussed the link between the gauge transformations associated with the
three-derivative vertex and the rigid symmetries of the free theory exhibited in [[§]. More
precisely, these gauge transformations can be seen as a gauging of these rigid symmetries,
similarly to what happens in the “Bell-Robinson” cases s; — so — so where s1 > 259 [E, E]

It would be of interest to enlarge the set of fields to spin 4 and see if this allows to
remove the previous obstructions at order two. A hint that this might be sufficient comes
from the fact that the commutator of two spin-3 generators produces spin-2 and spin-4
generators for the bosonic higher-spin algebra of ref. [f]. We hope to address this issue in
the future.

More generally, we believe that the two consistent vertices exhibited here can be related
to the flat space limit (appropriately defined, in order to avoid potential problems related
to the non-analyticity in the cosmological constant A) of the spin-3-spin-2 sector of the full
AdS,, higher-spin gauge theory of [f], B1, PJ (and references therein). Such a connection
would provide a geometric meaning for the long expressions for the vertices. That such
a Minkowski—(A4)dS link should be possible was mentioned in the pure spin-3 case [f.
In fact, it can be shown that there is a correspondence between the non-Abelian gauge
algebras obtained in the current flat-spacetime setting and the AdS,, higher-spin algebra
hu(1]2 : [n — 1,2]) reviewed e.g. in the second reference of 1. This is beyond the scope
of the present work and will be reported elsewhere.
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A. Proof of proposition 1

First, let us recall the results for pure spin-2 [ and pure spin-3 [f theories. In the spin-2
case, a convenient set of representatives of the cohomology of ~ is the set of functions of
the antighosts, [K¢], Cj and 9,

of the cohomology of ~ is the set of functions of the antighosts, [K4], [F], C’fy, T4 and UA.

Proposition [l| just says that, in the mixed case, the cohomology of « is the direct product

ij}. In the spin-3 case, the natural set of representatives
of the previous two sets.

pgh 0

~ can be seen as the sum of its spin 2 and spin 3 restrictions, that we will note v and ~3.
The homology of 7, (resp. 73) is simply the direct product of the homology in the spin 2
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(resp. 3) case and the set of all spin 3 (resp. 2) fields. Given an arbitrary 7-closed function
f at pgh 0 (i.e. it does not depend on any ghost), we have vf = vof + v3f = 0.

But, as 2 f is linear in the spin 2 ghosts and ~3 f is linear in the spin 3 ghosts, the two terms
are linearly independant and thus both vanish. This means that f is in the intersection
of the homologies of 72 and 3, so f = f([®3],[K?], [K4],[F“]). As there are no y-exact
objects in pgh 0, H°(v) is the set of those functions.

pgh > 0

Let us denote generically C*/C4 a basis of the spin 2/spin 3 ghosts and their derivatives.
The v-exact ghosts will be noted C* = «[h]* and C4 = ~[h]4 (the bracketed fields are the
adequate combinations of the fields or some of their derivatives). A pgh i object f? (with

antigh f*=k) is then a linear combination:

Fr=" faragara,,C™...C%CA L chin
J

Imposing that v fi = 0 gives rise to some relations between the v fal___aj Ajl A In general,
they would be a combination of the C* and the C#, but the coefficients will have to take
particular values:

(7) (J+1) e
LK} Wharagari, = (CDF Karagiiar.a,, C94

) A
+(_1)2+]+k ,Cal...ajAl..-Ai—j+l CAl—J+1

The coefficients K must be taken such that at least one index a and one index A are
contracted only with gamma exact objects (say the last index of both kinds as in the last
equation). The antigh sign factor has been introduced for later convenience. Finally, the
j=0and j =i+ 1 coefficients have to vanish.

)
Let us remark that 72fa1,,,a].,41___,4i7]. = 0 implies that V j : v K= 0. This means that

G+ , () o
fal...ajAl...Ai_j - Ical...aj+1A1...Ai_j [h]aj+1 + (_1)Z+] ,Cal...ajAl...Ai_j+1 [h]A27]+1

+ gal...ajAl...Ai_j

where Gay..ajAy. Ai_; € HO(W) and we obtain an expression for f? itself:
; (
eI
J
()

+(—1)i+j ,Cal...ajA1...Ai_j+1 [h]Ai_j‘HCal ... C_ajCAl o CAi_j
+9a1.a;Ar. A, ,CO . CUCH i)

_ Z[(j+1)
J

K 010y AL Ar cH _CajCAl o CAi—j—l ([h]aHl@Ai—j 4 C4+1 [h]Ai—j)
+9ar.a;Ay.a,,CO . .CTCA L CAiI]

J+1) , , .
K ai.ajiiAr.a,y [AHCH.CY cAr . CAi-
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4 ®)
— 7((_1)“’“1 > ;Jcal,,,aHlAl,,,AH co ... .cuch ...CAifl[h]“Hl[h]A”)
J

+ Zgal___ajAlmAchal . CajCAl . CA27‘7
J

The first term of the last expression is trivial in H(y) while the second, as we announced,
depends on the fields only through [K?], [K4] and [F4] thanks to the fact that the coeffi-
cients g belong to HY(7).

Finally, the second term can be rewritten as

ar.agAr.dy,C* . CUCA L CAI = Gl + GACH + ay”
= Y{Go[h]* + Ga[R]*} + g

where, as stated before, {w" } is a basis of the products of non-exact ghosts. The only
non-exact term in the last equation is the last one, with a; € H%(y). This expression is
the general form for a representative of H*(7y) that we announced.

B. First-order vertices

The three-derivative first-order vertex corresponding to the algebra deformation as o given
in (.12 is
ao,2 =(2) d"z = g3 Ul d"z,
where, denoting h = n#h,,, and hq = " heu ,
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The four-derivative first-order vertex corresponding to the algebra deformation ag 3 given
in ({.14) is

ao,3 Z(E) d'v = [Ty d"e,

where
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