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1. Introduction

Although free higher-spin (s > 2) gauge field theories are by now fairly well understood, the

Fronsdal programme [1] which consists in introducing (non-Abelian) consistent interactions

among these fields at the level of the action is still not achieved. Consistent nonlinear field

equations for massless totally symmetric higher-spin fields in AdSn background have been
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constructed [2], which represents a considerable achievement in higher-spin gauge field

theory. Nonetheless, a corresponding action principle is lacking.

In this paper we adopt the metric-like formulation for higher-spin gauge fields [1, 3],

consider collections of totally symmetric rank-2 and rank-3 gauge fields in flat space of

arbitrary dimension n > 3 and study the problem of introducing non-Abelian consistent

cross-interactions among spin-2 and spin-3 massless fields. By “non-Abelian”, we mean

that we focus on consistent deformations of the free theory such that the deformed gauge

algebra becomes non-Abelian.

Demanding Poincaré invariance and locality, the non-Abelian self-interacting problems

for collections of massless spin-2 and spin-3 fields, were respectively investigated in [4, 5]

and [6, 7] by using the exhaustive BRST-BV cohomological method developed in [8, 9].

The works [4 – 7] revealed the existence of manifestly covariant cubic vertices which had

not previously been written before. We refer to these works and [10, 11] for details and

reviews on the self-interacting non-Abelian problem for spin-2 and spin-3 gauge fields in

flat n-dimensional spacetime. The search for consistent higher-spin cubic vertices is a

very important problem and other approaches exist. See e.g. [12] for a recent light-cone

analysis in flat spacetime and more references on the problem of consistent higher-spin

vertices, including Yang-Mills and gravitational couplings. See also [13] for a recent work

concerning higher-spin vertices, including a discussion about the AdSn background.

The Poincaré-invariant, local, non-Abelian consistent cross-interactions between spin-2

and spin-3 gauge fields in flat space remained to be analyzed in an exhaustive way and

without any prejudice on the form of the interactions. In particular, we impose no upper

limit on the number of derivatives appearing in the non-Abelian consistent vertex, apart

that it should be finite in order that locality be preserved.

The advantage of the cohomological method [8, 9] which we use is that it enables one to

classify and explicitly write down the consistent, nontrivial cubic vertices, without any other

assumptions than locality and perturbative nature of the deformations. This method is

also compatible with manifest Poincaré and gauge invariances, which is of great importance

in the search for a possible geometrical interpretation of the higher-spin interactions. Since

we have access to all the possible local, perturbative deformations of the gauge algebra

and gauge transformations giving rise to nontrivial consistent cubic vertices, it can be

hoped that the deformed gauge transformations provide crucial information on a possible

underlying nonlinear higher-spin geometry in flat space. Such a geometrical picture would

in turn guide us toward a full nonlinear consistent Lagrangian.

Similarly to the self-interacting totally symmetric spin-2 and spin-3 cases [4 – 7], we

first classify the possible first-order deformations of the gauge algebra and then determine

which of these deformations give rise to nontrivial, consistent vertices. It turns out that

only two parity-invariant algebra-deforming candidates satisfy this strong requirement.

Interestingly enough, we find that, in order for the first candidate to induce a Poincaré-

invariant nontrivial vertex, the (colored) spin-2 massless fields must react to the spin-3 field

through a diffeomorphism-like transformation along the spin-3 gauge parameter, similarly

to the way a spin-1 field reacts to a gravitational background via its Lie derivative along

the diffeomorphism vector. Associated with the second algebra-deforming candidate is
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a gauge transformation of the spin-3 field along its own gauge parameter, but involving

the linearized Riemann tensor for the spin-2 field. The first algebra-deforming candidate

corresponds to the 3 − 2 − 2 covariant vertex mentioned in [14, 15], whereas the second

algebra-deforming candidate gives rise to a nontrivial consistent 2−3−3 vertex which had

previously not been written before, to our knowledge.

Our results therefore strengthen and complete those previously found in [16, 14, 15].

In particular, we recover in a simple way that both minimal and non-minimal couplings of

spin-3 gauge fields to dynamical gravity in flat space are inconsistent [16].

In the work [14], consistent and covariant cubic couplings of the kind s1 − s2 − s2 were

obtained, for the values of s1 and s2 indicated in table 1.

Of course, some of the vertices were
↓s1

→s2 0 1
2 1 3

2 2 5
2 3

0 × × × × ×

1 × × × × ×

2 × × × × × ×

3 × × × × × × ×

n ×

Table 1: s1 − s2 − s2 covariant vertices obtained

in [14].

already known before, like for example

in the cases 1 − 1 − 1, 2 − 2 − 2 and

2 − 3
2 − 3

2 corresponding to Yang-Mills,

Einstein-Hilbert and ordinary supergrav-

ity theories. There is a class of cross-

interactions s1−s2−s2 for which the cubic

vertices could easily been written. This

class corresponds to the “Bell-Robinson”

line s1 = 2s2 and below this line s1 >

2s2 [15] (see [17] in the particular s1 =

4 = 2s2 case). In the aforementioned region s1 > 2s2, the gauge algebra remains Abelian

although the gauge transformations for the spin-s2 field are deformed at first order in a

coupling constant. The reason is that the first-order deformation of the free spin-s2 gauge

transformations involve the spin-s2 field only through its gauge-invariant Weinberg-de Wit-

Freedman field-strength [3, 18].1 Although they do not lead to non-Abelian gauge algebras,

it is interesting that the cubic interactions on and below the Bell-Robinson line (i.e. for

s1 > 2s2) have the form “spin-s1 field times current J” where J is quadratic in the spin-s2

field-strength [17, 15] and is conserved on the spin-s2 shell. Even more interestingly, these

currents can be obtained from some global invariances of the free theory by a Noether-like

procedure, provided the constant parameters associated with these rigid symmetries be

replaced by the gauge parameters of the spin-s1 field (also internal indices must be treated

appropriately) [17, 15].

In the present paper, we re-derive the non-Abelian 3 − 2 − 2 cubic vertex mentioned

in [14], show that it is inconsistent when pushed up to second order in the deformation

parameter and obtain a consistent 2−3−3 vertex which passes the second-order consistency

test where the former Berends-Burgers-van Dam vertex fails. Moreover, at the level of the

1Note that one can write down higher-derivative Born-Infeld-like consistent cubic interactions involving

only gauge-invariant field-strength tensors [19]. However, these interactions deform neither the gauge

algebra nor the gauge transformations. They are not considered in the present work but are accounted

for in the powerful light-cone approach presented in [12].
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Jacobi identity at second order in the coupling constant, we show that the latter 2− 3− 3

covariant vertex is compatible with the spin-3 self-coupling written in [20]. Also, even

though the 3 − 2 − 2 vertex stands above the Bell-Robinson line s1 = 2s2, we show that

it can be seen as partially resulting from the gauging of the global symmetries discussed

in [15]. Of course, this vertex truly deforms the gauge algebra and consequently the coupling

cannot be written in the simple form outlined before. The gauge transformations for both

spin-2 and spin-3 fields are nontrivially deformed.

The plan of the paper is as follows. In the next section we recall some basic facts on the

free spin-2 and spin-3 gauge theories and on the BRST-antifield formalism used throughout

the text. Section 3 gathers together some BRST-cohomological results that are needed.

Section 4 contains most of our computations and results concerning the first-order con-

sistent couplings between spin-2 and spin-3 massless fields. In section 5 we present the

constraints that are imposed on the first-order deformations by second-order consistency

conditions. We also discuss the links between the first-order gauge transformations pre-

sented in section 4 and some results of [17, 15]. Finally, our conclusions and perspectives

are given in section 6. The first appendix contains a technical BRST-cohomological result.

The complete expressions for the first-order vertices are displayed in the second appendix.

2. Free theory and BRST settings

2.1 Free Theory

The action for a collection {ha
µν} of M non-interacting, massless spin-2 fields in spacetime

dimension n (µ, ν = 0, · · · , n − 1) is (equivalent to) the sum of M separate Pauli-Fierz

actions, namely

S2
0 [ha

µν ] =

M∑

a=1

∫
δab

[
−

1

2
(∂µha

νρ)
(
∂µhbνρ

)
+ (∂µhaµ

ν)
(
∂ρh

bρν
)

−
(
∂νhaµ

µ

) (
∂ρh

bρν
)

+
1

2
(∂µhaν

ν)
(
∂µhbρ

ρ

)]
dnx , n > 2. (2.1)

The lower-case Latin indices are internal indices taking M values. They are raised and low-

ered with the Kronecker delta’s δab and δab. The Greek indices are space-time indices taking

n values, which are lowered (resp. raised) with the “mostly plus” Minkowski metric ηµν

(resp. ηµν). The action (2.1)is invariant under the following linear gauge transformations,

δεh
a
µν = ∂µεa

ν + ∂νε
a
µ (2.2)

where the εa
ν are n×M arbitrary, independent functions. These transformations are Abelian

and irreducible. The equations of motion are

δS2
0

δha
µν

= −2Hµν
a = 0

where Ha
µν is the linearized Einstein tensor,

Ha
µν = Ka

µν −
1

2
Kaηµν .
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Here, Ka
αβµν is the linearized Riemann tensor,

Ka
αβµν = −

1

2
(∂αµha

βν + ∂βνh
a
αµ − ∂ανh

a
βµ − ∂βµha

αν) ,

Ka
µν is the linearized Ricci tensor,

Ka
µν = Kaα

µαν = −
1

2
(¤ha

µν + · · ·) ,

and Ka is the linearized scalar curvature, Ka = ηµνKa
µν . The Noether identities expressing

the invariance of the free action (2.1) under (2.2) are

∂νH
aµν = 0 (2.3)

(linearized Bianchi identities). The gauge symmetry removes unwanted unphysical states.

The local action for a collection {hA
µνρ} of N non-interacting totally symmetric massless

spin-3 gauge fields in flat spacetime is [1]

S3
0 [hA

µνρ] =
N∑

A=1

∫
δAB

[
−

1

2
∂σhA

µνρ∂
σhBµνρ +

3

2
∂µhA

µρσ∂νh
Bνρσ +

3

2
∂µhA

ν ∂µhBν +
3

4
∂µhAµ∂νhBν − 3 ∂µhA

ν ∂ρh
Bρµν

]
dnx , (2.4)

where hA
µ = ηνρhA

µνρ . The upper-case Latin indices are internal indices taking N values.

They are raised and lowered with the Kronecker delta’s δAB and δAB . The action (2.4) is

invariant under the gauge transformations

δλhA
µνρ = 3 ∂(µλA

νρ) , ηµνλA
µν = 0 , (2.5)

where the gauge parameters λA
νρ are symmetric and traceless. Curved (resp. square) brack-

ets on spacetime indices denote strength-one complete symmetrization (resp. antisym-

metrization) of the indices. The gauge transformations (2.5) are Abelian and irreducible.

The field equations read

δS3
0

δhA
µνρ

= G
µνρ
A = 0 , (2.6)

where

GA
µνρ = FA

µνρ −
3

2
η(µνFA

ρ) (2.7)

is the “Einstein” tensor and FA
µνρ the Fronsdal (or “Ricci”) tensor

FA
µνρ = ¤hA

µνρ − 3 ∂σ∂(µhA
νρ)σ + 3 ∂(µ∂νhA

ρ) . (2.8)

The Fronsdal tensor is gauge invariant thanks to the tracelessness of the gauge parameters.

Because we have δλS0[h
A
µνρ] = 0 for the gauge transformations (2.5), the Einstein tensor

GA
µνρ satisfies the Noether identities

∂ρGA
µνρ −

1

n
ηµν∂ρGA

ρ = 0 (GA
ρ = ηµνGA

µνρ) (2.9)
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related to the symmetries of the gauge parameters λA
µν ; in other words, the l.h.s. of (2.9)

is symmetric and traceless.

An important object is the Weinberg-de Wit-Freedman (or “Riemann”) spin-3 ten-

sor [18, 3, 25]

KA
αµ|βν|γρ = 8∂[γ∂[β∂[αhA

µ]ν]ρ]

which is antisymmetric in αµ , βν , γρ and invariant under gauge transformations (2.5),

where the gauge parameters λA
µν are however not necessarily traceless. Its importance,

apart from gauge invariance with unconstrained gauge parameters, stems from the fact

that the field equations (2.6) are equivalent to the following equations

ηαβKA
αµ|βν|γρ = 0 ,

after a partial gauge fixing. This was proved in the work [23] by combining various former

results [24 – 26]. See [27] for more details and for the arbitrary mixed-symmetry case.

2.2 BRST spectrum and differential

According to the general rules of the BRST-antifield formalism, the field spectrum consists

of the fields {ha
µν , hA

µνρ} , the ghosts {Ca
µ, CA

µν}, the antifields {h∗µν
a , h

∗µνρ
A } and the ghost

antifields {C∗µ
a , C

∗µν
A }. The set of fields and ghosts will sometimes be collectively denoted

by ΦI , whereas the associated set of antifields will be denoted by Φ∗
I .

The BRST differential s of the free theory S0[h
a, hA] = S2

0 [ha
µν ]+S3

0 [hA
µνρ] is generated

by the functional

W0 = S0[h
a, hA] +

∫
( 2h∗αβ

a ∂αCa
β + 3h

∗µνρ
A ∂µCA

νρ) dnx .

More precisely, W0 is the generator of the BRST differential s of the free theory through

sA = (W0, A) ,

where the antibracket ( , ) is defined by

(A,B) =
δRA

δΦI

δLB

δΦ∗
I

−
δRA

δΦ∗
I

δLB

δΦI
,

using the condensed de Witt notation in which a summation over a repeated index also

implies an integration over spacetime variables.

The functional W0 is a solution of the master equation

(W0,W0) = 0 .

In the theory at hand, the BRST-differential s decomposes into s = γ + δ . The first

piece γ , the differential along the gauge orbits, is associated with the N-grading called

pureghost number (puregh) and increases it by one unit, whereas the Koszul-Tate differen-

tial δ decreases the grading called antighost number (antigh) by one unit. The differential

– 6 –



J
H
E
P
1
1
(
2
0
0
6
)
0
3
4

Z puregh(Z) antigh(Z) gh(Z) parity (mod 2)

{ha
µν , hA

µνρ} 0 0 0 0

{Ca
µ, CA

µν} 1 0 1 1

{h∗µν
a , h

∗µνρ
A } 0 1 −1 1

{C∗µ
a , C

∗µν
A } 0 2 −2 0

Table 2: Pureghost number, antighost number, ghost number and parity of the (anti)fields.

s increases the Z-grading called ghost number (gh) by one unit. Furthermore, the ghost,

antighost and pureghost gradings are not independent. We have the relation

gh = puregh − antigh .

The pureghost number, antighost number, ghost number and grassmannian parity of the

various fields are displayed in table 2. The action of the differentials δ and γ gives zero on

all the fields of the formalism except in the few following cases:

δh
∗µνρ
A = G

µνρ
A , δh

∗µν
a = −2Hµν

a ,

δC
∗µν
A = −3(∂ρh

∗µνρ
A − 1

n
ηµν∂ρh

∗ρ
A ) , δC

∗µ
a = −2∂νh

∗νµ
a ,

γhA
µνρ = 3 ∂(µCA

νρ) , γha
µν = 2 ∂(µCa

ν) .

More details about the antifield formalism for spin-2 and spin-3 can be found in [4, 6].

2.3 BRST deformations

As shown in [8], the Noether procedure can be reformulated within a BRST-cohomological

framework. Any consistent deformation of the gauge theory corresponds to a solution

W = W0 + gW1 + g2W2 + O(g3)

of the deformed master equation (W,W ) = 0. Consequently, the first-order nontrivial

consistent local deformations W1 =
∫

an, 0 are in one-to-one correspondence with elements

of the cohomology Hn, 0(s| d) of the zeroth order BRST differential s = (W0, ·) modulo the

total derivative d , in maximum form-degree n and in ghost number 0 . That is, one must

compute the general solution of the cocycle condition

san, 0 + dbn−1,1 = 0 , (2.10)

where an, 0 is a top-form of ghost number zero and bn−1,1 a (n − 1)-form of ghost number

one, with the understanding that two solutions of (2.10) that differ by a trivial solution

should be identified

an, 0 ∼ an, 0 + spn,−1 + dqn−1, 0 ,

as they define the same interactions up to field redefinitions. The cocycles and coboundaries

a, b, p, q, . . . are local forms of the field variables, including ghosts and antifields (those are

– 7 –
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forms acting on the jet space Jk, the vectorial space generated by the fields and a finite

number k of their derivatives).

The corresponding second-order interactions W2 must satisfy the consistency condition

sW2 = −
1

2
(W1,W1) . (2.11)

This condition is controlled by the local BRST cohomology group Hn,1(s|d).

3. Cohomological results

3.1 Cohomology of γ

In the context of local free theories in Minkowski space for massless spin-s gauge fields

represented by totally symmetric (and double traceless when s > 3) rank s tensors, the

groups H∗(γ) have been calculated in [28]. When a sum of several such theories for different

spins is considered, the cohomology is the direct product of the cohomologies of the different

theories. We will prove it only in the case of a sum of spin-2 and spin-3 Fronsdal theories,

but the proof can straightforwardly be extended.

Proposition 1. The cohomology of γ is isomorphic to the space of functions depending

on

• the antifields {h∗µν
a , h

∗µνρ
A , C

∗µ
a , C

∗µν
A } and their derivatives, denoted by [Φ∗

I ] ,

• the curvatures and their derivatives [Ka
αµβν ] , [KA

αµ|βν|γρ
] ,

• the symmetrized derivatives ∂(σ1
. . . ∂σk

FA
µνρ) of the Fronsdal tensor,

• the ghosts Ca
µ and their antisymmetrized first-order derivatives ∂[µCa

ν], the ghosts CA
µν

and the traceless parts of ∂[µCA
ν]ρ and2 ∂[µCA

ν][ρ,σ].

Thus, identifying with zero any γ-exact term in H(γ), we have

γf = 0

if and only if

f = f
(
[Φ∗

I ], [K
A
αµ|βν|γρ], [K

a
αµβν ], {FA

µνρ}, C
a
ν , ∂[µCa

ν], C
A
µν , T̂A

αµ|ν , ÛA
αµ|βν

)

where {FA
µνρ} stands for the completely symmetrized derivatives ∂(σ1

. . . ∂σk
FA

µνρ) of the

Fronsdal tensor, while T̂A
ρµ|ν denotes the traceless part of TA

ρµ|ν = ∂[ρC
A
µ]ν and ÛA

ρµ|σν
the

traceless part of UA
ρµ|σν

= ∂[ρC
A
µ][ν,σ] .

2A coma denotes a partial derivative, e.g. ΦI
,µ = ∂µΦI .

– 8 –
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Let {ωI} be a basis of the space of polynomials in the Ca
µ, ∂[µCa

ν], CA
µν , T̂A

αµ|ν and

ÛA
αµ|βν

(since these variables anticommute, this space is finite-dimensional). If a local form

a is γ-closed, we have

γa = 0 ⇒ a = αJ([Φ∗
I ], [K

a], [KA], {FA})ωJ (Ca
µ, ∂[µCa

ν], C
A
µν , T̂A

αµ|ν , ÛA
αµ|βν) + γb .(3.1)

If a has a fixed, finite ghost number, then a can only contain a finite number of antifields.

Moreover, since the local form a possesses a finite number of derivatives, we find that the αJ

are polynomials. Such a polynomial αJ([Φ∗
I ], [K

a], [KA], {FA}) will be called an invariant

polynomial . The proof of Proposition 1 is given in appendix A.

Remark: Because of the Damour-Deser identity [25]

ηαβKA
αµ|βν|γρ = 2 ∂[γFA

ρ]µν ,

the derivatives of the Fronsdal tensor FA are not all independent of the curvature tensor

KA . This is why, in Proposition 1, the completely symmetrized derivatives of FA appear,

together with all the derivatives of the curvature KA . However, from now on, we will

assume that every time the trace ηαβKA
αµ|βν|γρ

appears, we substitute 2∂[γFA
ρ]µν

for it.

With this convention, we can write αJ([Φ∗
I ], [K

a], [KA], [FA]) instead of the inconvenient

notation αJ([Φi∗], [Ka], [KA], {F}) .

3.2 Invariant Poincaré lemma

We shall need several standard results on the cohomology of d in the space of invariant

polynomials.

Proposition 2. In form degree less than n and in antifield number strictly greater than 0,

the cohomology of d is trivial in the space of invariant polynomials. That is to say, if α is

an invariant polynomial, the equation dα = 0 with antigh(α) > 0 implies α = dβ where β

is also an invariant polynomial.

The latter property is rather generic for gauge theories (see e.g. ref. [4] for a proof), as well

as the following:

Proposition 3. If a has strictly positive antifield number, then the equation γa + db = 0

is equivalent, up to trivial redefinitions, to γa = 0. More precisely, one can always add

d-exact terms to a and get a cocycle a′ = a + dc of γ, such that γa′ = 0.

Proof. See e.g. [6].

3.3 Cohomology of δ modulo d : Hn
k (δ| d)

In this section, we review the local Koszul-Tate cohomology groups in top form-degree and

antighost numbers k > 2 . The group Hn
1 (δ| d) describes the infinitely many conserved

currents and will not be studied here.

Let us first recall a general result (Theorem 9.1 in [29]).

– 9 –
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Proposition 4. For a linear gauge theory of reducibility order r,

Hn
p (δ| d) = 0 for p > r + 2 .

Since the theory at hand has no reducibility, we are left with the computation of Hn
2 (δ| d) .

The cohomology Hn
2 (δ| d) is given by the following theorem.

Proposition 5. A complete set of representatives of Hn
2 (δ|d) is given by the antifields

{C∗µ
a , C

∗µν
A }, up to explicitly x-dependent terms. In detail,

{
δan

2 + dbn−1
1 = 0

an
2 ∼ an

2 + δcn
3 + dcn−1

2

⇐⇒ an
2 =

[
λa

µ(x)C∗µ
a + LA

µν(x)C∗µν
A

]
dnx + δbn

3 + dbn−1
2

where λa
µ(x) = aa

µ + . . . is a degree-1 polynomial in xν and LA
µν(x) = λA

µν + . . . is a degree-2

polynomial.

The coefficients of these polynomials have definite symmetry properties that we will not

recall here. The complete analysis can be found in [4, 6]. See also [30, 31]. From the

requirement of Poincaré invariance, explicit dependence in the coordinates is forbidden

and we will only consider the constant terms aa
µ and λA

µν in the expansions of λa
µ(x) and

LA
µν(x).

The most general n-form in antigh 2 is a = (fa
µC

∗µ
a + f̂A

µνC
∗µν
A )dnx + Φ + δb + dc, where

Φ is quadratic in the antigh-1 antifields. If one applies δ, the δ-exact term vanishes and

δΦ ≈ 0. So, if a ∈ Hn
2 (δ|d), the weak equality (−2fa

µ∂νh
∗µν − 3f̂A

µν∂ρh
∗µνρ
A )dnx ≈ dv is

obtained. Finally, by applying variational derivatives with respect to h
∗µν
a and h

∗µνρ
A , the

two weak equalities ∂(µfa
ν) ≈ 0 and ∂(µf̂A

νρ) ≈ 0 are obtained. These are both on-shell

Killing equations for the individual spin-2 and spin-3 cases. Each equation of the type

∂(µ1
f̂µ2...µs) ≈ 0 provides Hn

2 (δ|d) for the pure spin-s case, the solutions of which have been

given in ref. [28] (see also [30]). This is because those solutions are δ-closed modulo d and

because Φ obeying δΦ+dc ≈ 0 is a trivial cocycle [32]. The spin-2 case under consideration

was already written in ref. [4] and the spin-3 case was written in [6, 31]. In any mixed case,

the different equations for the different spins will have to be satisfied and Hn
2 (δ|d) is then

the direct sum of the individual cases.

We have studied above the cohomology of δ modulo d in the space of arbitary local

functions of the fields, the antifields, and their derivatives. One can also study Hn
k (δ|d)

in the space of invariant polynomials in these variables. The above theorems remain un-

changed in this space, i.e. we have the

Proposition 6. The invariant cohomology Hn
k (δ|d,H0(γ)) is trivial in antighost number

k > 2 . In antighost number k = 2, we have the isomorphism Hn
2 (δ|d,H0(γ)) ∼= Hn

2 (δ|d) .

This very nontrivial property is crucial for the computation of Hn,0(s| d). It has been proved

for the spin-2 case in [4] and for the spin-3 case in [6] for n > 3, and [7] for n = 3 . In the

mixed spin-2-spin-3 case, the proof goes along the same lines. It has to be checked that,

in a coboundary in form degree n: ak = δbk+1 + ∂µj
µ
k (in dual notation), if ak is invariant,
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then bk+1 and j
µ
k can be chosen as being invariant. This is done by reconstructing ak from

its variational derivatives with respect to the different fields and antifields (see [4], Lemma

A.2 and [6], section 4.6.2). The considerations made for the spin-2 and spin-3 derivatives

hold independently here, and ak can be reconstructed in an invariant way with no further

problems.

3.4 Definition of the D-degree

Definition (differential D): The action of the differential D on the fields, the antifields

and all their derivatives is the same as the action of the total derivative d, but its action

on the ghosts is given by:

DCa
µν =

4

3
dxα T̂ a

α(µ|ν) ,

DT̂ a
µα|β = dxρ Ûa

µα|ρβ ,

D(∂ρ1...ρtC
A
µν) = 0 if t > 2 ,

DCa
µ = dxν∂[νC

a
µ] ,

D(∂ρ1...ρvCa
µ) = 0 if v > 1 .

The above definitions follow from

∂αCA
µν =

1

3
(γhA

αµν) +
4

3
TA

α(µ|ν) ,

∂ρT
A
µα|β = −

1

2
γ(∂[αhA

µ]βρ) + UA
µα|ρβ ,

∂ρU
A
µα|νβ =

1

3
γ(∂[µhA

α]ρ[β,ν]) .

The operator D thus coincides with d up to γ-exact terms.

It follows from the definitions that DωJ = AJ
Iω

I for some constant matrix AJ
I that

involves dxµ only. It is also convenient to introduce a new grading.

Definition (D-degree): The number of T̂A
αµ|ν ’s and ∂[µCa

ν]’s plus twice the number of

ÛA
αµ|βν

’s is called the D-degree. It is bounded because there is a finite number of ∂[µCa
ν]’s,

T̂A
αµ|ν ’s and ÛA

αµ|βν
’s, which are anticommuting. The operator D splits as the sum of

an operator D1 that raises the D-degree by one unit, and an operator D0 that leaves it

unchanged. D0 has the same action as d on the fields, the antifields and all their derivatives,

and gives 0 when acting on the ghosts. D1 gives 0 when acting on all the variables but the

ghosts on which it reproduces the action of D.

4. First-order consistent deformations

As recalled in section 2.3, nontrivial consistent interactions are in one-to-one correspon-

dance with elements of Hn,0(s|d), i.e. solutions a of the equation

sa + db = 0 , (4.1)

– 11 –



J
H
E
P
1
1
(
2
0
0
6
)
0
3
4

with form-degree n and ghost number zero, modulo the equivalence relation

a ∼ a + sp + dq .

Quite generally, one can expand a according to the antighost number, as

a = a0 + a1 + a2 + . . . ak , (4.2)

where ai has antighost number i. The expansion stops at some finite value of the antighost

number by locality, as was proved in [32].

Let us recall [9] the meaning of the various components of a in this expansion. The

antifield-independent piece a0 is the deformation of the Lagrangian; a1, which is linear in

the antifields h∗, contains the information about the deformation of the gauge symmetries,

given by the coefficients of h∗; a2 contains the information about the deformation of the

gauge algebra (the term C∗CC gives the deformation of the structure functions appearing

in the commutator of two gauge transformations, while the term h∗h∗CC gives the on-

shell closure terms); and the ak (k > 2) give the informations about the deformation of the

higher order structure functions and the reducibility conditions.

4.1 Equations

In fact, using the previous cohomological theorems and standard reasonings (see e.g. [4]),

one can remove all components of a with antifield number greater than 2. The key point

is that the invariant characteristic cohomology H
n,inv
k (δ|d) controls the obstructions to the

removal of the term ak from a and that all H
n,inv
k (δ|d) vanish for k > 2 by Proposition 4

and Proposition 6.

Let us now decompose the cocycle condition (4.1) according to the antighost number.

If a = a0 + a1 + a2, then b can be assumed to stop at antigh 1 thanks to Proposition 3.

Using the fact that s = δ + γ, we obtain:

γa2 = 0 , (4.3)

δa2 + γa1 + db1 = 0 , (4.4)

δa1 + γa0 + db0 = 0 . (4.5)

The first equation clearly means that [a2] ∈ H2(γ) ⇔ a2 = αJωJ +γc2 as in Equation (3.1).

Applying γ to Equation (4.4), dγb1 = 0 is obtained. Thanks to the Poincaré lemma and

Proposition 3, we see that b1 can be taken in H2(γ) too: b1 = βJωJ . The second equation

becomes

(δαJ )ωJ + γa1 + dβJωJ + βJdωJ = 0 .

Let us now introduce the differential D defined in section 3.4, we obtain

(δαJ + dβJ + βIA
I
J)ωJ = γ(. . .) = 0 .

This is because the left-hand side is strictly non γ-exact. Let us label the ghosts more

precisely ωJi where i is the D-degree. Then, as D raises by 1 the D-degree, the only non
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zero components of the matrix A are AJi

Ji+1
and the last equation decomposes into:

δαJ0
+ dβJ0

= 0 ,

∀i > 0 : δαJi
+ dβJi

+ βJi−1
A

Ji−1

Ji
= 0 .

The first equation means that

αJ0
∈ Hn

2 (δ|d,H0(γ)) ⇒ αJ0
= [λJ0aµC∗aµ + λJ0AµνC∗Aµν ]dnx ,

thanks to Proposition 5 and Proposition 6. The λ’s are constants, because of the Poincaré

invariance. We obtain

βJ0
=

−1

(n − 1)!
[2λJ0aµh∗aµα + 3λJ0AµνC∗Aµνα]εαµ1...µn−1

dxµ1 . . . dxµn−1 .

Thus, βJ0
AJ0

J1
depends only on the underivated antifields, which cannot be δ-exact

modulo d unless they vanish, because a δ-exact term depends on the derivatives of the

antifields or on the equations of motion, and because of the Poincaré invariance. Thus,

δαJ1
+dβJ1

= 0 and βJ0
AJ0

J1
= 0 independently. By applying the same reasoning recursively,

the same decomposition appears to occur at every D-degree, so we finally obtain:

∀i δαJi
+ dβJi−1

= 0 ⇒ αJi
∈ H2,inv(δ|d) ,

∀i : βJi
AJi

Ji+1
= 0 .

(4.6)

4.2 Classification of the gauge algebras

The first set of equations (4.6) provides a very limited number of candidates a2 . The

different possible Lorentz-invariant terms have the form αJi
ωJi = λJi... C

∗... ωJi . The

indices Ji are spacetime indices and internal indices.3 The Poincaré and parity invariance

requirements impose that the constant tensors λJi... depend only on ηµν or δα
β . Thus, the

only possible terms are given by the Lorentz-invariant contractions of an undifferentiated

antifield C∗... with ωJi ’s quadratic in the ghosts, contracted with arbitrary internal constant

“tensors”. The pure spin-2 and spin-3 terms have already been studied in [4] and [6]. Let

us give the exhaustive list of cross-interacting terms:

(1)
a 2 =

(1)

f A[bc] C∗Aµν Cb
µ Cc

ν dnx ,

(2)
a 2 =

(2)

f aBc C∗aµ CB
µν Ccν dnx ,

(3)
a 2 =

(3)

f ABc C∗Aµν ∂[νC
B
σ]µ Ccσ dnx ,

(4)
a 2 =

(4)

f ABc C∗Aµν CB α
µ ∂[νC

c
α] d

nx ,

(5)
a 2 =

(5)

f aBC C∗aα CBµν ∂[νC
C
α]µ dnx ,

(6)
a 2 =

(6)

f abC C∗aµ ∂[νCρ]b ∂[νC
C
ρ]µ dnx ,

3For example: {ωJ0} = {CaαCbβ , CaαCbµν , CAαβCBµν}.
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(7)
a 2 =

(7)

f [ab]C C∗Cµν ∂[µCa
α] ∂[νC

b
β] η

αβ dnx ,

(8)
a 2 =

(8)

f aBC C∗aµ ∂[αC |B|β]ν ∂µ∂[αCC
β]ν dnx ,

where {
(i)

f }8
i=1 are eight arbitrary constant tensors.

Note that a
(8)
2 is trivial when n = 3 , because of a Schouten identity (or equivalently

because there is no non-vanishing tensor Ûαβ|µν in dimension 3).

4.3 Computation of the gauge transformations

The second set of equations (4.6) has to be satisfied in order for Equation (4.4) to have

a solution, and thus in order for a1 to exist. This is not true for every
(i)
a 2. In fact, it is

faster to directly compute δa2 and check whether it is γ-exact modulo d, possibly given a

symmetry rule on the internal indices. The latter condition δa2 + γa1 + dc1 = 0 implies

that the constant tensors
(1)

f Abc,
(2)

f aBc and
(5)

f aBC must vanish. The following relations

between constant tensors are also obtained:
(8)

f aBC=
(8)

f a(BC) and
(4)

f ABc= −3
2

(3)

f ABc . We

thus get all of the possible a1’s, which we classify according to the number of derivatives

they involve:

a1,1 =
(3)

f ABc

[
3

2
h∗Aµνρ

(
∂[νh

B
σ]µρC

cσ − ∂[νC
B
σ]µhcσ

ρ − hA α
µρ ∂[νCc

α] + 3CBα
µ ∂[νh

c
α]ρ

)

−
3

4n
h∗ρ∂ρ(h

B
σ Ccσ)

]
dnx , (4.7)

a1,2 =
(6)

f abC h∗aµσ
[
2∂νhbρ

σ ∂[νC
C
ρ]µ − ∂νCbρ∂[νh

C
ρ]µσ

]
dnx

+6
(7)

f abC

[
h∗Cµνρ −

1

n
ηµνh∗Cρ

]
∂[µha

α]ρ∂[νC
b
β]η

αβdnx + ā1,2 , (4.8)

a1,3 = −
(8)

f aBC h∗aµρ∂αCBβν [2∂µ[αhC
β]νρ − ∂ν[αhC

β]µρ]d
nx + ā1,3 , (4.9)

where the ā1,i terms are solutions of the homogeneous equations

γā1,i + dc1,i = 0 , (4.10)

which is equivalent to solving the equation

γā1,i = 0 ⇒ [ā1,i] ∈ H1(γ) , (4.11)

as proved by Proposition 3.

As a matter of fact, the solutions ā1,i linear in the fields play a crucial role in the

present analysis, as we show in the next subsection. There is no such solution with one

derivative, because the γ-closed functions of the fields involve at least 2 derivatives.
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4.4 Computation of cubic vertices

We now have to solve equation (4.5) for each a1,i . In order to achieve this heavy calculation,

we have been using FORM, a powerful software for symbolic computation (see [33]). We

have simply considered the most general candidates for a0,i, implemented the a1,i (including

the most general expression for ā1,i) then solved the systems. It turns out that δa1,1

cannot be γ-exact modulo d, but we obtain consistent vertices for the two other cases,

corresponding to a1,2 and a1,3 .

Incidentally, note that the last term on the first line of Equation (4.7) gives the first-

order correction needed in order to transform the ordinary derivative ∂(µλνρ) into the co-

variant one ∇(µλνρ) for the torsionless metric connection ∇ associated with gµν = ηµν +hµν

(where we omit to write the internal indices). In other words, we recover the result of [16]

that both minimal and non-minimal couplings of massless spin-3 field to dynamical gravity

in flat space are inconsistent. In fact our result is more general. It says that, what-

ever the complete gauge transformation of the spin-3 field is, if it contains the first-order

correction needed to transform δ0hµνρ = 3 ∂(µλνρ) into the covariantized transformation

δλhµνρ = 3∇(µλνρ), then there is no consistent couplings between the spin-3 and spin-2

fields in flat background. Apart from Lorentz invariance, we made no assumptions on the

form of the possible interaction and imposed no constraints on the number of derivatives

(except that it should be finite for locality). The result follows from consistency.

4.4.1 Solution with three derivatives

First, some new relations on the structure constants are obtained:
(7)

f [ab]C= −1
3

(6)

f abC .

From now on, we will call the structure constant gAbc = gA[bc]. The solution of Equa-

tions (4.3), (4.4) and (4.5) is as follows:

a2,2 = gAbc

[
C∗bµ ∂νCcρ ∂[νC

A
ρ]µ −

1

3
C∗Aµν ∂[µCb

α] ∂[νC
c
β] η

αβ

]
dnx , (4.12)

a1,2 = gAbch
∗bµσ

[
2∂νhcρ

σ ∂[νC
A
ρ]µ − ∂νCcρ∂[νh

A
ρ]µσ

]
dnx

−3gAbch
∗bαβKc

αµβνCAµνdnx

−2gAbc

[
h∗Aµνρ −

1

n
ηµνh∗Aρ

]
∂[µhb

α]ρ∂[νC
c
β]η

αβdnx , (4.13)

The expression for a0,2 is given in appendix B.

4.4.2 Solution with four derivatives

Let us rename faBC the structure constant
(8)

f aBC . The solution of the equations (4.3), (4.4)

and (4.5) is

a2,3 = faBC C∗aµ ∂αCBβν ∂µ∂[αCC
β]ν dnx , (4.14)

a1,3 = faBC

[
3

8
h∗aµν∂ρFB

ρ CC
µν +

3

2
h∗Bαβγ∂αKa

βµγνCCµν +
2

n
h∗BαKa

αµνρ∂
νCCρµ

]
dnx

− faBC h∗aµρ ∂αCBβν
[
2∂µ[αhC

β]νρ − ∂ν[αhC
β]µρ

]
dnx , (4.15)
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The expression for a0,3 is given in appendix B.

5. Further results

5.1 Conditions at second order in the coupling constants

After this exhaustive determination of the consistent first-order deformations W1, it is

natural to study the second order equation (2.11). This equation can be decomposed into

equations of definite antighost numbers. Let us consider W2 =
∫
(b0 + b1 + b2 + . . .). The

top equation is then

(a2, a2) = −2δb3 − 2γb2 + d(. . .) ,

but (a2, a2) does not depend on the fields and on the antigh-1 antifields so no δ-exact term

can appear. This means that ∀i > 2 : sbi = d(. . .). This follows the same pattern as for

W1. It has been shown in [4] that the homology of s modulo d is trivial in that sector and

thus the expansion of W2 stops at antigh = 2.

Let us now compute the antibracket (a2, a2). We have to consider for a2 the sum of the

different terms related to cubic vertices involving spin-2 and/or spin-3 fields. This includes

a2,2 and a2,3, the pure spin-2 Einstein-Hilbert term [4]

aEH
2 = aabcC

∗aµCbν∂[µCc
ν]d

nx

and the two pure spin-3 terms [6]

aBBvD
2 = kA

BC C
∗µν
A (TB

µα|βTCα|β
ν − 2TB

µα|βTCβ|α
ν +

3

2
CB αβUC

µα|νβ) dnx

and

aBBC
2 = lABC C

∗µν
A UB

µα|βλUCα|βλ
ν dnx .

Let us give the list of the different antibrackets involving a2,2 and a2,3 in which we have

already isolated γ-exact and d-exact parts:

(aEH
2 , a2,2) = −aa

cdgabEC∗cν∂[νC
d
µ]∂[σCb

ρ]T
Eσρ|µ + aa

cdgabEC∗c
τ Cd

µ∂[σCb
ρ]U

Eτµ|σρ

+aa
cdg

E
ab ∂[τC

c
β]∂[µCd

ν]η
νβ

(
C∗bα∂[τC

µ]
Eα + 2

3C
∗γ[τ
E ηµ]σ∂[γCb

σ]

)

+γ(. . .) + div.

(aEH
2 , a2,3) = −aa

effaBCC∗eν∂[νC
f
µ]T

B
ρσ|τUCρσ|µτ + aa

effaBCC∗eτC
f
µUB

ρσ|τν
UCρσ|µν

+γ(. . .) + div.

(a2,2, a2,2) = 2gaeCge
bD

[
C∗aµ∂[βCb

γ]T
C
τα|µUDτα|βγ − 2

3C∗cµτ∂[µCa
α]∂[βCb

γ]U
Cα|βγ
τ

]

+γ(. . .) + div.

(a2,2, a2,3) = gabCfa
DE

[
C∗bνTC

τµ|ν + 2
3C∗Cν

[τ δσ
µ]∂[νC

b
σ]

]
UDβτ |ραU

Eµ
β |ρα

+ γ(. . .) + div.

(a2,2, a
BBvD
2 ) = gabCkC

DEC∗aµ∂[τC
b
ν]×[

3
4UDτν|αβTE

αβ|µ − 3UD ν
µ(α|β) TEτ(α|β) + 3

4UDν
µ |αβ

TEαβ|τ
]

+1
2gabCkC

DEC∗D
αβ UEαµ|βν∂[µCa

ρ]∂[νC
b
σ]η

ρσ + γ(. . .) + div.
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(a2,3, a2,3) = 0

(a2,3, a
BBvB
2 ) = −faBCkB

DEC∗a
τ UCρµ|τν

[
9
8UD

ρµ|αβ
T

Eαβ
|ν + 3UD

ρ(α|β)νT
D(α|β)
µ

]

+faBCkB
DEC∗aρTCσµ|ν

[
9
8UD

ρν|αβ
U

E αβ

σµ| + 3UD
ρ(α|β)σU

E(α|β)
µ ν

]

+γ(. . .) + div.

The antibrackets involving aBBC
2 are both γ-exact modulo d, which is mostly because of

its high number of derivatives. We can see that a2,3 seems to be behaving well. First,

its antibracket with itself is vanishing. Then, looking at its antibracket with aBBvD
2 , it

appears that the two expressions between square brackets of non γ-exact terms are very

similar. The only difference is the ordering of the internal indices and thus, by imposing the

relation faB(CkB
D)E = 0, this antibracket is consistent. Then, we can see that a2,2 seems to

be obstructed. The antibrackets (a2,2, a2,2) and (a2,2, a
BBvD
2 ) have some non γ-exact terms

in common but there is no combination allowing to remove them all. The only remaining

ways to remove such terms would be to consider a2 terms involving combinations of spins

1 − 2 − 2, 1 − 3 − 3, 1 − 2 − 3 or 2 − 3 − 4. As we stated in the introduction, it is already

known that there is no deformation of the algebra for combinations s1 − s2 − s2 where

s1 > 2s2 so there is no a2 for a 4 − 2 − 2 combination. It is very easy to see that there is

no Lorentz-invariant way to write an a2 for a 1 − 2 − 3 combination. The remaining cases

are more promising and we intend to study them in a near future. But it already appears

to us that they do not remove the obstruction in (a2,2, a2,2) . It is not very surprising

that the antibrackets (aEH
2 , a2,2) and (a2,2, a2,3) do not behave well either. The last term,

(aEH
2 , a2,3), brings in another interesting feature. Once again, the obstructions that it

brings could be eliminated, resorting to 2 − 3 − 4 interactions. However, as a preliminary

computation shows, no terms quadratic in U appear for 2 − 3 − 4 deformations. So this

indicates that the 2 − 3 − 3 deformation that we have found is not compatible with the

Einstein-Hilbert deformation.

5.2 Gauging of rigid symmetries

In the previous section, we obtained two classes of first-order deformations associated with

non-Abelian algebras. Corresponding to the gauge-algebra deformation a2,2 displayed in

equation (4.12) we have the following first-order gauge transformations

δha
αβ = g a

B b

(
3Kb

µαβνλBµν + ∂[νh
b
ρ]α∂νλ

Bρ
β + ∂[νh

b
ρ]β∂νλBρ

α − ∂[νh
B
ρ]αβ∂νεbρ

)
, (5.1)

δhA
µνρ = −2gA

bc

(
∂[µhb

σ]ρ∂[νε
c
τ ]η

στ −
1

n
ηµν ∂[αhb

β]ρ∂
[αεβ]c

)
, (5.2)

where the right-hand-side of (5.2) must be totally symmetrized on the free indices. The

first term on the right-hand-side of (5.1) comes from ā1,2, solution of the equation (4.11).

The term δ̄λha
αβ = −3 ga

bB Kb
µανβλBµν is therefore absolutely necessary for the existence

of the cubic vertex associated with a2,2 . Up to some trivial gauge transformation, it is

possible to express δ̄λha
αβ differently: δ̄λha

αβ = 3
2 Sλ ha

αβ − 3 ∂(αV a
β), where

S
λ
ha

αβ = ga
bB

[
λBµν ∂µ∂νhb

αβ + ∂αλBµν ∂µhb
νβ + ∂βλBµν ∂µhb

να + ∂α∂βλBµν hb
µν

]
(5.3)
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and V a
α = ga

bB [2λBµν ∂[µhb
α]ν + 1

2 ∂α(λBµνhb
µν)] . The transformations 3

2 Sλ ha
αβ and δ̄λha

αβ

are identified since they differ by a trivial zeroth-order gauge transformation −3 ∂(αV a
β)

which can be eliminated by a redefinition of the gauge parameters εa
α in Formula (2.2).

Because the transformation δ̄λha
αβ involves the spin-2 fields ha

αβ only via the linearized

Riemann tensors Kb
µανβ , it is clear that δ̄λha

αβ is γ-closed and the following commutation

relations hold [δε, δ̄λ] = 0 , where δεh
a
αβ = 2∂(αεa

β) . The latter vanishing of commutator

simply re-expresses the fact that ā1 is not derived from any algebra-deformation a2, since

it satisfies the equation (4.10) γā1 + δa2 = dc1 with a2 δ-trivial modulo d.

When the parameters λAµν are all constant, the transformations (5.1) reduce, modulo

trivial gauge transformations, to δha
µν = 3

2 ga
bB λBαβ ∂α∂βhb

µν . Therefore, we recover the

rigid symmetries δha
µ1...µs

→ ha
µ1...µs

+ ξa α1...αn
c ∂α1

. . . ∂αnhc
µ1...µs

exhibited in [15], where

s = 2, n = 2 and ξac
α1α2

= 3
2 λB

α1α2
δcb g a

B b . As in [15], we have ξac
α1α2

= (−)n−1ξca
α1α2

due to the symmetry properties of gA bc that we derived in our cohomological analysis

in section 4.4.1. Retrospectively, we can therefore consider the consistent first-order de-

formation obtained in section 4.4.1 as resulting from the gauging of the rigid symmetry

ha
µ1µ2

→ ha
µ1µ2

+ ξa α1α2
c ∂α1

∂α2
hc

µ1µ2
presented in [15]. However, we have shown that this

gauging is inconsistent when pushed up to the second order in the coupling constants.

Remark: In the framework of differential multicomplexes (see [26] and the appendix A

of [27] for precise definitions and related concepts) we are given s differential forms dix
µ (i =

1, 2, . . . , s) obeying dix
µdjx

ν = (−)δij djx
νdix

µ where the wedge product is not explicitly

written. Their adjoints (dix
µ)† obey the same (anti)commutation relations and we have the

crossed (anti)commutation relations [dix
µ, (djx

ν)†]± = δijη
µν where [ , ]± stands for the Z2-

graded commutator. The s nilpotent differential operators di = dix
µ ∂L

∂xµ (i = 1, 2, . . . , s)

are defined which generalize the exterior differential of the de Rham complex. Setting

s = 2 and forgetting about the internal indices for a while since they play no role in the

following discussion, we may view hαβ as the components of the differential multiform

h = hαβ d1x
αd2x

β and re-write Formula (5.3) as

S
λ
h = (iλd1d2 + d1iλd2 + d2iλd1 + d1d2iλ)h

= (d1 + d2 + iλ)3 h (5.4)

where iλ = λµν(d1x
µ)†(d2x

ν)† . The expression (5.4) S
λ

= (d1 + d2 + iλ)3 generalizes

Cartan’s formula Lζ = (iζ + d)(iζ + d) = iζd + d iζ for the usual Lie derivative along the

vector ζ in the framework of the de Rham differential complex. There, iζ is the interior

product associated with the vector ζ and d the usual exterior differential.

When a spin-1 field Aµ is coupled to gravity, it transforms under diffeomorphisms via the

Lie derivative along the diffeomorphism vector ζ, δdiff
ζ A = LζA where A = dxµ Aµ . By

analogy, it is tempting to view S
λ

h as the “spin-3 diffeomorphism” of the spin-2 field h =

hαβ d1x
αd2x

β along the gauge parameter λ = λµν∂µ∂ν of the spin-3 field. However, as we

said before, this transformation appears in the deformation W1 =
∫

(a2,2+a1,2+a0,2) which,

we have shown, is inconsistent when pushed at second order in the coupling constants.

Let us now consider the gauge transformations corresponding to the four-derivative

deformation W1 =
∫
(a2,3 + a1,3 + a0,3) obtained in section 4.4.2. See in particular Equa-
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tion (4.15). It turns out to be convenient to add trivial gauge transformations to them, by

noting that

3

8
h∗aµν∂ρFB

ρ CC
µν = −

3

4n
h∗aµνδ(∂ρh∗B

ρ )CC
µν = δ

(
3

4n
h∗aµν∂ρh∗B

ρ CC
µν

)
+ . . .

= −
3

2n
h∗Bρ

(
∂ρK

a
µνCCµν +

4

3
Kaµν∂[ρC

C
µ]ν

)
+ δ(. . .) + γ(. . .) + d(. . .) .

Accordingly, we have the following first-order gauge transformations of the spin-2 and

spin-3 fields:

δha
µν = −fa

BC

[
∂αλBβσ

(
∂µ[αhC

β]σν + ∂ν[αhC
β]σµ − ∂σ[αhC

β]µν

)]
(5.5)

δhB
αβγ = f B

a C

[
3

2

(
∂αKa

βµγν −
1

n
ηαβ∂γKa

µν

)
λCµν

+
2

n
ηαβ

(
Ka

γµνρ + Ka
µ[νηρ]γ

)
∂νλCρµ

]
(5.6)

where the right-hand-side of the second equation must be totally symmetrized over the

free indices. By setting the gauge parameters to constants, one could wonder whether

some rigid symmetry appears, that could retrospectively be seen as being gauged. Clearly,

nothing comes from the gauge transformations of ha
αβ . As far as the spin-3 fields are

concerned, only the term f B
a C

[
3
2

(
∂αKa

βµγν − 1
n

ηαβ∂γKa
µν

)
λCµν

]
(which must be sym-

metrized over αβγ) survives when the gauge parameters are set to constants. However,

with λCµν all constants, it is readily seen that it can be written as 3∂(αΛB
βγ) where

ΛB
βγ = −f B

a C

[
1
2

(
Ka

µ(βγ)ν + 1
n

ηβγKa
µν

)
λCµν

]
and hence can be eliminated by a redefi-

nition of the gauge parameters of the free gauge transformations (2.5). Indeed, ηβγΛB
βγ

is vanishing. As a result, no rigid gauge transformations can be obtained upon setting to

constants the gauge parameters in the first-order gauge transformations (5.5) and (5.6).

[Note, however, that the constants are not the only solutions of the higher-spin Killing

equations.]

6. Conclusions and perspectives

In this paper we carefully analyzed the problem of introducing consistent cross-interactions

among a countable collection of spin-3 and spin-2 gauge fields in flat spacetime of arbitrary

dimension n > 3 . For this purpose we used the powerful BRST cohomological deformation

techniques in order to be exhaustive. Under the sole assumptions of locality, parity invari-

ance, Poincaré invariance and perturbative deformation of the free theory, we proved that

only two classes of non-Abelian deformations are consistent at first order. The first defor-

mation, which involves three derivatives in the Lagrangian, was already mentioned in the

work [14]. We showed that it is obstructed at second order in the deformation parameters

if no other fields are present in the analysis. The second deformation involves four deriva-

tives in the Lagrangian and passes the second-order constraint — equivalent to the Jacobi
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identities of the gauge algebra at the corresponding order — where the previous defor-

mation failed. Moreover, combining this algebra-deformation with the one corresponding

to the Berends-Burgers-van Dam deformation, the crossed second-order constraint is also

satisfied given a symmetry condition on the product of the internal coefficients, while a

combination with the Einstein-Hilbert deformation is obstructed.

We also discussed the link between the gauge transformations associated with the

three-derivative vertex and the rigid symmetries of the free theory exhibited in [15]. More

precisely, these gauge transformations can be seen as a gauging of these rigid symmetries,

similarly to what happens in the “Bell-Robinson” cases s1−s2−s2 where s1 > 2s2 [17, 15].

It would be of interest to enlarge the set of fields to spin 4 and see if this allows to

remove the previous obstructions at order two. A hint that this might be sufficient comes

from the fact that the commutator of two spin-3 generators produces spin-2 and spin-4

generators for the bosonic higher-spin algebra of ref. [2]. We hope to address this issue in

the future.

More generally, we believe that the two consistent vertices exhibited here can be related

to the flat space limit (appropriately defined, in order to avoid potential problems related

to the non-analyticity in the cosmological constant Λ) of the spin-3-spin-2 sector of the full

AdSn higher-spin gauge theory of [2, 21, 22] (and references therein). Such a connection

would provide a geometric meaning for the long expressions for the vertices. That such

a Minkowski–(A)dS link should be possible was mentioned in the pure spin-3 case [6].

In fact, it can be shown that there is a correspondence between the non-Abelian gauge

algebras obtained in the current flat-spacetime setting and the AdSn higher-spin algebra

hu(1|2 : [n − 1, 2]) reviewed e.g. in the second reference of [21]. This is beyond the scope

of the present work and will be reported elsewhere.
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A. Proof of proposition 1

First, let us recall the results for pure spin-2 [4] and pure spin-3 [6] theories. In the spin-2

case, a convenient set of representatives of the cohomology of γ is the set of functions of

the antighosts, [Ka], Ca
µ and ∂[µCa

ν]. In the spin-3 case, the natural set of representatives

of the cohomology of γ is the set of functions of the antighosts, [KA], [F ], CA
µν , T̂A and ÛA.

Proposition 1 just says that, in the mixed case, the cohomology of γ is the direct product

of the previous two sets.

pgh 0

γ can be seen as the sum of its spin 2 and spin 3 restrictions, that we will note γ2 and γ3.

The homology of γ2 (resp. γ3) is simply the direct product of the homology in the spin 2
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(resp. 3) case and the set of all spin 3 (resp. 2) fields. Given an arbitrary γ-closed function

f at pgh 0 (i.e. it does not depend on any ghost), we have γf = γ2f + γ3f = 0.

But, as γ2f is linear in the spin 2 ghosts and γ3f is linear in the spin 3 ghosts, the two terms

are linearly independant and thus both vanish. This means that f is in the intersection

of the homologies of γ2 and γ3, so f = f([Φ∗
I ], [K

a], [KA], [FA]). As there are no γ-exact

objects in pgh 0, H0(γ) is the set of those functions.

pgh > 0

Let us denote generically Ca/CA a basis of the spin 2/spin 3 ghosts and their derivatives.

The γ-exact ghosts will be noted C̄a = γ[h]a and C̄A = γ[h]A (the bracketed fields are the

adequate combinations of the fields or some of their derivatives). A pgh i object f i (with

antigh f i = k) is then a linear combination:

f i =
∑

j

fa1...ajA1...Ai−j
Ca1 . . . CajCA1 . . . CAi−j

Imposing that γf i = 0 gives rise to some relations between the γfa1...ajA1...Ai−j
. In general,

they would be a combination of the C̄a and the C̄A, but the coefficients will have to take

particular values:

∃ {
(j)

K} |γfa1...ajA1...Ai−j
= (−1)k

(j+1)

K a1...aj+1A1...Ai−j
C̄aj+1

+(−1)i+j+k
(j)

Ka1...ajA1...Ai−j+1
C̄Ai−j+1

The coefficients K must be taken such that at least one index a and one index A are

contracted only with gamma exact objects (say the last index of both kinds as in the last

equation). The antigh sign factor has been introduced for later convenience. Finally, the

j = 0 and j = i + 1 coefficients have to vanish.

Let us remark that γ2fa1...ajA1...Ai−j
= 0 implies that ∀ j : γ

(j)

K= 0. This means that

fa1...ajA1...Ai−j
=

(j+1)

K a1...aj+1A1...Ai−j
[h]aj+1 + (−1)i+j

(j)

Ka1...ajA1...Ai−j+1
[h]Ai−j+1

+ ga1...ajA1...Ai−j

where ga1...ajA1...Ai−j
∈ H0(γ) and we obtain an expression for f i itself:

f i =
∑

j

[
(j+1)

K a1...aj+1A1...Ai−j
[h]aj+1Ca1 . . . CajCA1 . . . C̄Ai−j

+(−1)i+j
(j)

Ka1...ajA1...Ai−j+1
[h]Ai−j+1Ca1 . . . C̄ajCA1 . . . CAi−j

+ga1...ajA1...Ai−j
Ca1 . . . CajCA1 . . . CAi−j ]

=
∑

j

[
(j+1)

K a1...aj+1A1...Ai−j
Ca1 . . . CajCA1 . . . CAi−j−1([h]aj+1 C̄Ai−j + C̄aj+1 [h]Ai−j )

+ga1...ajA1...Ai−j
Ca1 . . . CajCA1 . . . CAi−j ]
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= γ

(
(−1)i+k+1

∑

j

(j)

Ka1...aj+1A1...Ai−j
Ca1 . . . CajCA1 . . . CAi−j−1 [h]aj+1 [h]Ai−j

)

+
∑

j

ga1...ajA1...Ai−j
Ca1 . . . CajCA1 . . . CAi−j

The first term of the last expression is trivial in H i(γ) while the second, as we announced,

depends on the fields only through [Ka], [KA] and [FA] thanks to the fact that the coeffi-

cients g belong to H0(γ).

Finally, the second term can be rewritten as

ga1...ajA1...Ai−j
Ca1 . . . CajCA1 . . . CAi−j = GaC̄

a + GAC̄
A + αIω

I

= γ{Ga[h]a + GA[h]A} + αIω
I

where, as stated before, {ωJ} is a basis of the products of non-exact ghosts. The only

non-exact term in the last equation is the last one, with αJ ∈ H0(γ). This expression is

the general form for a representative of H i(γ) that we announced.

B. First-order vertices

The three-derivative first-order vertex corresponding to the algebra deformation a2,2 given

in (4.12) is

a0,2 =
(3)

L dnx = gA
bc U bc

A dnx ,

where, denoting h = ηµνhµν and hα = ηµνhαµν ,

U bc
A = −

1

2
hα

A¤hb∂αhc +
1

2
h

αβγ
A ∂β∂γhb∂αhc +

1

2
h

αβγ
A ¤hb

βγ∂αhc

+
1

2
hα

A∂β∂γhb
βγ∂αhc + hα

A∂β∂γhb∂αhc
βγ +

1

2
hα

A¤hbβγ∂αhc
βγ

− h
αβγ
A ∂βδh

b δ
γ ∂αhc − h

αβγ
A ∂βδh

b∂αhc δ
γ −

1

2
h

αβγ
A ¤hb

βδ∂αhc δ
γ

−
3

2
hα

A∂β∂γhb
βδ∂αhc δ

γ −
1

2
h

αβγ
A ∂β∂γhbµν∂αhc

µν − h
αβγ
A ∂µ∂νhb

βγ∂αhc
µν

+
1

2
h

αβγ
A ∂γ∂δh

bδε∂αhc
βε +

3

2
h

αβγ
A ∂γ∂δh

b
βε∂αhcδε + h

αβγ
A ∂δ∂εhb

βδ∂αhc
γε

−
1

4
hα

A∂α∂γhb∂γhc −
1

2
h

αβγ
A ∂α∂εh

b
βγ∂εhc + h

αβγ
A ∂α∂εh

b∂εhc
βγ

+
1

4
hα

A∂α∂εh
bµν∂εhc

µν −
1

2
h

αβγ
A ∂α∂εh

b
βδ∂

εhc δ
γ + hAµ∂α∂εh

bαµ∂εhc

− hAµβγ∂α∂εh
bαµ∂εhcβγ +

1

2
hτ

A∂α∂εh
bαµ∂εhc

µτ − hAµ∂α∂εh
b∂εhcαµ

+ hAµβγ∂α∂εh
bβγ∂εhcαµ −

1

2
hτ

A∂α∂εh
b
µτ∂εhcαµ −

1

2
hα

A¤hb
αγ∂γhc

+
1

2
h

αβγ
A ∂β∂γhb

αρ∂
ρhc +

1

2
h

αβγ
A ¤hb

αρ∂
ρhc

βγ +
1

2
hα

A∂β∂γhb
αρ∂

ρhcβγ

− h
αβγ
A ∂β∂δh

b
αρ∂

ρhc δ
γ −

1

4
hAµ∂β∂µhb

βγ∂γhc −
1

2
hAµνρ∂

β∂µhb
βγ∂γhcνρ
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+ hν
A∂β∂µhb

βγ∂γhc
µν −

1

2
hAµ¤hb

βγ∂γhcβµ +
1

2
hAµνρ∂

ν∂ρhb
βγ∂γhcβµ

−
1

4
hτ

A∂µ∂τh
b
βγ∂γhcβµ +

1

2
hα

A¤hb∂γhc
αγ −

1

2
h

αµν
A ∂µ∂νhb∂γhc

αγ

−
1

2
h

αµν
A ¤hb

µν∂γhc
αγ −

1

2
hα

A∂µ∂νhb
µν∂γhc

αγ + h
αµν
A ∂ν∂ρh

b ρ
µ ∂γhc

αγ

+
1

4
hAβ∂α∂βhb∂γhc

αγ +
1

2
hAβµν∂α∂βhbµν∂γhc

αγ − hτ
A∂α∂µhb

µτ∂γhc
αγ

+
1

2
hAµ¤hbαµ∂γhc

αγ −
1

2
hAµνρ∂

ν∂ρhbαµ∂γhc
αγ +

1

4
hτ

A∂µ∂τhbαµ∂γhc
αγ .

The four-derivative first-order vertex corresponding to the algebra deformation a2,3 given

in (4.14) is

a0,3 =
(3)

L dnx = fa
BCTBC

a dnx ,

where

TBC
a =

1

4
ha¤∂2

αβhB
γ hCαβγ −

1

4
ha∂

4
αβγδh

BαβεhCγδ
ε +

1

8
ha∂

4
αβγδh

BαhCβγδ

−
1

4
hαβ

a ∂4
αβµνhB

γ hCγµν −
1

2
hαβ

a ∂4
αµνρh

B
β hCµνρ +

1

2
hαβ

a ∂4
αµνρh

Bρσ
β hCµν

σ

+
1

4
hαβ

a ∂4
αµνρh

Bµh
Cνρ
β −

1

4
hαβ

a ¤∂2
µνh

B
αβρh

Cµνρ +
1

4
hαβ

a ∂4
µνρσh

Bµ
αβhCνρσ

+
1

2
hαβ

a ¤∂2
µνhB

α h
Cµν
β −

1

2
hαβ

a ∂4µνρσhB
αµνhC

βρσ −
3

8
hαβ

a ¤∂2µνhB
µ hC

αβν

+
1

4
hαβ

a ∂4µνρσhB
µνρh

C
αβσ

−
1

2
hαβ

a ∂3
βµνhB

ρ ∂αhCµνρ +
3

8
hαβ

a ∂3
βµνhBµ∂αhCν +

1

4
hαβ

a ∂3
βµνhBµρσ∂αhCν

ρσ

+
3

4
hαβ

a ¤∂γhB
β ∂αhCγ −

1

4
hαβ

a ¤∂γhB
βµν∂αhCγµν −

1

4
hαβ

a ∂3
µνρh

B
β ∂αhCµνρ

−
3

4
hαβ

a ∂3µνρhB
βνρ∂αhC

µ +
1

2
hαβ

a ∂3µνρhB
βµσ∂αhC σ

νρ −
9

8
hαβ

a ¤∂γhBγ∂αhC
β

+
3

4
hαβ

a ∂3
µνρh

Bµνρ∂αhC
β +

1

2
ha¤∂αhBµνρ∂αhC

µνρ +
1

2
ha∂

3αµνhBρ∂αhC
µνρ

+
3

8
ha∂

3αµνhB
µ ∂αhC

ν − ha∂
3αµνhB

µρσ∂αhCρσ
ν −

1

2
hαβ

a ∂3
γαβhB

ρστ∂γhCρστ

−
1

2
hαβ

a ∂3
γµνhB

αβρ∂
γhCρστ +

3

4
hαβ

a ∂3γµνhB
αβµ∂γhC

ν −
1

2
hαβ

a ∂3γµνhB
µ ∂γhC

αβν

−
3

2
hαβ

a ∂3
γαµhB

β ∂γhCµ + hαβ
a ∂3

γαµhB
βνρ∂

γhCµνρ +
3

8
hαβ

a ∂3
γαµhBµ∂γhC

β

+
3

4
hαβ

a ∂3
γαµhBµνρ∂γhC

βνρ +
3

4
hαβ

a ¤∂γhB
α ∂γhC

β −
3

4
hαβ

a ¤∂γhB
αµν∂γh

Cµν
β

−
3

4
hαβ

a ∂3γµνhB
αµν∂γhC

β +
3

4
hαβ

a ∂3γµνhB
α ∂γhC

βµν +
3

4
ha¤∂αhBβ∂βhC

α

−
1

2
ha∂

3µνρhBα∂αhC
µνρ −

3

4
ha∂

3
µνρh

Bαµν∂αhCρ −
1

2
ha¤∂ρhBαµν∂αhC

µνρ

+ ha∂
3
µρσhBαµν∂αhCρσ

ν −
3

4
hαβ

a ¤∂µhB
γαβ∂γhCµ +

1

2
hαβ

a ∂3
µνρh

B
γαβ∂γhCµνρ
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−
3

4
hαβ

a ∂3
µαβhB

γ ∂γhCµ +
1

2
hαβ

a ∂3
µαβhB

γνρ∂
γhCµνρ − hαβ

a ¤∂µhB
γ ∂γhC

µαβ

+ hαβ
a ∂3µνρhB

γνρ∂
γhCµαβ − hαβ

a ∂3
αµνhB

βγρ∂
γhCµνρ +

3

2
hαβ

a ∂3
αµνh

Bγµ
β ∂γhCν

−
3

2
hαβ

a ∂3µνρhB
αγρ∂

γhC
βµν +

3

2
hαβ

a ¤∂µhBγν
α ∂γhC

βµν +
3

2
hαβ

a ∂3
αµνhB

γ ∂γh
Cµν
β

−
3

2
hαβ

a ∂αµνhBγµρ∂γhC ν
βρ +

3

4
hαβ

a ¤∂µhBµ∂νhC
ναβ −

1

2
hαβ

a ∂3
µνρh

Bµνρ∂σhC
σαβ

−
1

4
hαβ

a ∂3
αµνhBµ∂γh

Cγν
β −

1

2
hαβ

a ¤∂µhB
α ∂γhC

βγµ +
1

2
hαβ

a ∂3µνρhB
ανρ∂

γhC
βγµ

−
1

4
ha¤hBα

¤hC
α +

1

8
ha¤hBαβγ

¤hC
αβγ +

1

8
ha¤hBα∂2

αβhCβ

−
3

4
ha¤hBρσα∂2

αβhC β
ρσ +

3

4
ha¤hBαβµ∂2

αβhC
µ +

1

2
ha¤hB

µ ∂2
αβhCαβµ

+
1

4
ha∂

2αβhBµ∂2
αβhC

µ +
3

8
ha∂

2αβhBµνρ∂2
αβhC

µνρ +
1

8
ha∂

2αµhB
µ ∂2

ανhCν

−
1

8
ha∂

2αµhB
µρσ∂2

ανhCνρσ +
7

8
ha∂

2αµhBν∂2
ανhC

µ −
5

8
ha∂

2αµhBνρσ∂2
ανhC

µρσ

− ha∂
2αµhB

µνρ∂
2ν
α hCρ −

1

4
ha∂

2αβhB
αβγ∂2

µνhCµνγ −
1

8
ha∂

2αβhB
αβγ∂2γµhC

µ

+
1

4
ha∂

2αβhBµνγ∂2
µνhC

αβγ −
5

4
ha∂

2αβhB
µ ∂2ηµhC

αβγ +
5

4
ha∂

2αβhB
αµγ∂2µνh

C γ
βν

+
1

2
hαβ

a ∂2
αβhBγ

¤hC
γ −

1

4
hαβ

a ∂2
αβhBµνρ

¤hC
µνρ −

3

4
hαβ

a ∂2
αβhBµνρ∂2

µνhC
ρ

−
1

2
hαβ

a ∂2
αβhB

ρ ∂2
µρh

Cµνρ −
1

8
hαβ

a ∂2
αβhBµ∂2

µνhCν +
3

4
hαβ

a ∂2
αβhBρσµ∂2

µνhC ν
ρσ

+
1

2
hαβ

a ¤hB
αβγ¤hCγ −

1

2
hαβ

a ¤hB
αβγ∂2

µνhCγµν −
3

4
hαβ
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µνhB

αβγ¤hCγµν

−
1

2
hαβ

a ∂2
µνhB

αβγ∂2µνhCγ + hαβ
a ∂2

µνhB
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ρ hCγνρ +
3

4
hαβ

a ∂2µνhB
αβµ∂2

ντh
Cτ

+
3

4
hαβ

a ∂2µνhB
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ν −
3

4
hαβ

a ∂2µνhB
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νρσ −
7

4
hαβ

a ∂2
ντh

B
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−
1

8
hαβ

a ¤hB
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ν +
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4
hαβ

a ∂2ρσhB
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νρσ −
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4
hαβ

a ∂2
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+
5

4
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a ∂2
µαhB
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3

4
hαβ

a ∂2
µαhB
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5

4
hαβ

a ∂2
µαhB
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−
5

2
hαβ
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1

4
hαβ
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β ∂2

νρh
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a ∂2
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ν
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a ∂2
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8
hαβ

a ∂2
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β ∂2µνhC
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+
1

4
hαβ

a ∂2
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νρσ +
5

8
hαβ

a ∂2
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4
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+
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2
hαβ

a ∂2
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+
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β −
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αµhBν∂
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β hC

ν −
1
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β hC

νρσ

+
1

4
hαβ

a ∂2
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4
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a ∂2
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+
1

4
hαβ

a ∂2
αµhBνρσ∂2

βνh
C µ
ρσ + hαβ

a ∂2
αµhBµνρ∂2

βνhC
ρ +

1

4
hαβ

a ¤hB
α ¤hC

β

−
1

4
hαβ

a ¤hBµν
α ¤hC

βµν +
1

4
hαβ

a ¤hB
αµν∂2µνhC

β −
3

4
hαβ

a ¤hB
α ∂2µνhC

βµν

+ hαβ
a ¤hB ρ

αµ ∂2
νρh

Cµν
β +

1

2
hαβ

a ∂2µνhB
αµν∂2ρσhC

βρσ −
1

2
hαβ

a ∂2µνhB
αρσ∂2ρσhC

βµν

−
1

2
hαβ

a ∂2µνhB
αµρ∂

2ρσhC
βνσ +

1

2
hαβ

a ∂2µνhB
α ∂2

µνhC
β −

1

2
hαβ

a ∂2µνhBρσ
α ∂2

µνhC
βρσ

−
1

2
hαβ

a ∂2µρhB
αρσ∂2σ

µ hC
β −

1

2
hαβ

a ∂2µρhB
αρτ∂2

µσhCστ
β + hαβ

a ∂2µρhBστ
α ∂2

µσhC
βρτ .
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